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Abstract:

It is clamed hereby that, against a current view of logia theory of consequence, opposition i
basic logical concept that can be used to defimseguence itself. This requires some subste
changes in the underlying framework, including: @en-Fregeansemantics of questions a
answers, instead of the usual t-conditional semantics; an extension of oppositisraaelatior
between any structured objects; a definition ofagifions in terms of basic negation. Objecti
to this claim will be reviewe.
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1. Introduction

The paper wants to do justice to the central coution of opposition to the way meaning
currently formed and conveyed. For this purposeutetell some words about the meaning
“meaning” while turning to the very content of oggmn, from Aristotle’s works to a genel
theory between logic, ontology, and alge

1.1. Opposition and Meaning

Meaning has to do with information, and informatisnrot a read-made collection of
related objects. Moreover, existence does not deebe so a crucial property of an object o
information has more to do with how people interaith each other. Theses precisions may he
bring some light upon the pbsophical background of our logic of opposition,endthe centre
concept of “truth” has to be treated very cautipusl an intersubjective sense of accef
information.

That a formal semantics equally applies to differestegories of things like irviduals,
concept or sentences entails that ot-called “logic” of opposition lies between formaltology
and algebra. However, it can belled a theory of meaning safelgsofar as it relies upon al
guestions and answers liable to present sometls a relevant information beyond the sole cas
sentences. To put it in other words, the followsggnantics depis from the realis-minded notion
of truth by relating meaning to the way in whichygmece of information is given about a putat
object. The more objects there are in a given local onigltige more questions are to be aske
order to make order between them. Borrowing froem@oodmanian parlance [6], there are se\
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ways of making worlds and, correspondingly, one #mel same object can have a different
meaning-in-a-model (a local ontology) accordinghe number of properties it is provided with.

That it existsis a thing; but another thing is that, accordingus, existence is neither a
necessary nor a sufficient condition to say anghimeaningful about it. Therefore, one and the
same object can belong to different worlds (or ni&)dence different properties are assigned to it
or, better, different perspectives are entertatnetiake a description of it. To push the line farth
let us say that the so-called “actual” world is axamal lexical field, i.e. a proper set of overlapgp
sets of information; each element of this commonladvoan (and, indeed, does often) belong to
different such subsets that are to be compared ‘pitssible worlds”, i.e. different perspectives
(lexical fields) from which they are entertainedvatuable pieces of information.

1.2. Plan of Work

The theory of opposition is investigated and reéedsin the present talk. This will be made
in two main steps, defensive and constructive iin.t(l) Against a widespread opinion, it is argued
that such a theory is not just an old-fashioneddggf Aristotle’s traditional logic that would hav
definitely failed because of the problemexdstential import(2) Beyond the current view that logic
is a theory of consequence, it is suggested thabgipon is a more basic relation encompassing
Tarski’s consequence as a particular case of oppos(3) Objections to this counterintuitive view
of opposition will be reviewed and lead to a mor@adical view of the logical discipline: the aim
of logic is not so much preserving truth than espireg structured differences.

Logic as a theory of difference will be defendedd®ws.

(1) According to Aristotle’s logical legacy [1], ¢he are four kinds of logical opposition
between universal and particular propositiomsntrariety, contradiction subcontrariety and
subalternation

After defining these, attention will be paid fingpon the so-called problem of existential
import; the logical square of opposition is saidb® invalidated once the predications are about
empty terms, leading to a radical depreciationhef theory of opposition because of its allegedly
limited application and dependence upon some posgdions of traditional logic. Against this
definite view, it is shown that existential impaldes not invalidate the logical square under some
alternative formalization of the propositions [4].

(2) Then the concept of opposition is abstractednfits historical context and developed
into a set-theoretical approach [14,15,16]. Firsblyposition is given as a binarglation between
structured objectsSecondly, a correlated theory of opposites depigipositions as a relation
between a relatum and its opposite. Thirdly, a Rmegean semantics leads to a Boolean calculus of
oppositesQuestion-Answer Semanti@isereafterQAS), where the logical value of any structured
proposition is an ordered set of answers to coomdipg questions. In the case of logical
oppositions, the meaning of structured propositisrafforded by questions about thdisjunctive
normal form A Boolean algebra of the classical oppositionto¥es from it and matches with
Piaget’s INRC Group [12]. Fourthly, the crucialeafnegationaccounts for the oppositional roots
of logical consequence, and its oppositional natargustified by claiming that subalternation
proceeds as a double mixed negation.

(3) Finally, a number of objections will be addesssabout this revisited theory of
opposition. These can be summed up by the followuregstions:

(a) Can opposition be something else than a relasfancompatibility? (c) Isn’t subalternation a
restrictedly standard view of logical consequen@®?Can one set up a proper calculus with the
opposite-forming operators?

A way to reply to this set of objections requiresadternative view of logic: not a theory of
truth-preserving consequence, but a theory of miffee-forming negation. A way to uphold this
trend within QAS requires the epistemological primacy mégationupon truth. The variety of
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logical negations must be distinguished from théque operator oidenial for every opposite
relation between structured objects.

2. TheHistorical Background of Opposition

Two reasons may be advocated at the least to dietvihte theory of opposition is on a par
with Aristotle’s logical works. For one thing, tfamous “square of opposition” is currently
assigned to the philosopher's name, although it been argued elsewhere (e.g. in [14]) why
Aristotle never mentioned any such figure in higi¢dal writings. On the other hand, each of the
well-known relations of opposition finds its rodts Aristotle’s texts, too. This is not the whole
story, however, in the sense that a properly lddgloeory of opposition can be displayed without
resorting to traditional logic. In this respecftpamal device can be used to set up a Boolean edgeb
of opposition which doesn't take into account attyeo information than logical values.

Let us return to the historical background of ledioppositions, however, in order to see more
clearly how an algebraic logic of oppositions canfteely abstracted from the Aristotelian theory
of quantified propositions while embracing it akdiger.

2.1. Definitions

Aristotelian oppositions are characterized by samoastraints upon the truth-values of
related propositiona andb.

Proposition 1
a andb arecontraryto each other iff they cannot breie together.

Proposition 2
a andb arecontradictoryto each other iff they cannot bele together and cannot i@setogether.

Proposition 3
a andb aresubcontraryto each other iff they cannot fesetogether.

Proposition 4
b is subalternto a iff b cannot be false whenevais true.

A number of questions arise from this preliminarsegentation, including the three
following ones. First: why does one deal with l@jioppositions in the form of a square, i.e. why
should one stick to four logical relations among #ix edges (four straight lines and two
diagonals)? Next: does it make sense to talk abhutontrariety and subalternation within a theory
of oppositior? Aristotle depicted the former in terms of “verlogpositions” (see e.g. [3], p. 416)
while ignoring the latter as an opposition altogethafter all. Last, but not least: what of non-
classical negations with respect to the theory ppositions? While Aristotle clearly linked
opposition and negation through the so-called lafvsion-contradiction(a proposition and its
negation cannot be true together) axtluded middlg€a proposition and its negation cannot be
false together), contradiction is the only kind agiposition that relates to negation from this
classical (bivalent) perspective.

Another focus is in order before answering thesestijans in the sequel, namely, one of the logical
problems that led to the historical fall of thedheof opposition.

2.2. Existential Import
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According to the so-called problem existential importthe logical square of opposition is
made invalid by a standard, truth-functional serigantince propositions refer to empty names, i.e.
dummy individuals that don't exist (like “the presding of France”, “griffins”, and the like). Ifcs
then its applicability is restricted to non-emptgaels and thereby weakens the scientific relevance
of a logical theory of opposition. Such a semadiificulty has to do with the way truth-values are
assigned to propositions, since a predication“ltkes P” assumes for its truth that S be instaatat
by at least one individuaksay).

A modern formal translation of Aristotle’s traditial logic turns predications into quantified
propositions like “(.x)(SK) ... PK))”, where the blanks are to be filled by quantsigeither
universal or existential) and logical connectiveghler conditional or conjunction). Except for the
ambiguous case of singular propositions, the rasudt clear correspondence between traditional
and modern formulas.

Proposition 5

Formulas from traditional logic can be translateadmodern first-order logic as follows.
(A) Universal affirmative: “Every S is P=:(0x)(Sx 0 Px); (E) Universal negative: “Every S is not
P” == (Ox)(Sx O [Px); (1) Particular affirmative: “Some S is P=([X)(Sx O Px); (O) Particular
negative: “Some S is not P= ([X)(Sx [ [Px).

Let us consider the sentence “Some griffins ar@”ni¢he truth-value of this particular
affirmative relies upon whether there is some gritfhich happens to be nice. But there cannot be
some such creature, for no griffin exists at aktnele the first conjunctXds made false, and so is
the entire conjunctive proposition. Let us write\fl) = F the case that the I-proposition is false.
This entails that its contradictory, i.e. the cepending universal affirmative, is true, according
the definition of contradictories just given abovéE) = T. This sounds intuitively right, since no
griffin could be nice once no such creature exiBtg.the tricky point is about its subaltern, tlee
related particular negative to the effect that s@mgin is not nice. Such a proposition cannot be
true whenever no griffin exists, so thé®) = F. The whole set of logical oppositions is thusdds
with their aforementioned definitions, as witnesdeyl the following invalid square and its
troublesome relation (in bold face).

V(A)=F V(E) :.F

vi)=T WO)=T

A number of replies have been proposed to setike globlem, namely: restricting the
existential import of propositions; discarding th&®rmal modern interpretation; invalidating the
square as it stands, otherwise. Our own solutionldveonsist in changing the formalization of
particulars, as argued in a recent paper (seeipd@ nutshell, our point is that the contradicterof
universals should not be rendered in the form as$temtial propositions whose truth-conditions
require the existence of their subject-term. Whateke explanatory value of this formal reply may
be, it helps to save the square and enhancesattific value within the realm of logic.

Once the square of quantified propositions is restowe can push the line further by
abstracting from the category of sentences Aristoths strictly concerned with. Logical values are
the essential information required to define lobmapositions, indeed, and any sort of meaningful
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object is included in our discussion. But to dastually requires another formal semantics than the
truth-conditional one.

3. A formal theory of opposition

The subsequent formal semantics makes a primatinatisn between oppositions and
opposites, before defining their features by medriBoolean bitstrings. Just as Tarski suggested an
abstract view of consequence as either a relatatwden sets of formulas or an operator [20,21],
the same treatment will be reserved to the logioatept of opposition.

3.1. Opposition asa relation

It is taken to be granted that opposition processla relation between objects, irrespective
of how many and what these are exactly. Although rtiainstream theory of opposition usually
refers to the binary relation between propositi@sse.g. in [14]), it will be argued in the follavg
that our proposed semantics needn’'t apply to pitpos and equally applies to individuals,
concepts, or whatever does make sense by meargueson-answer game.

Proposition 6
An opposition Op is an ordered binary relation kesw any meaningful objectsand b:
Op(ab), such that it holds iff the 2-tuple of objeetb satisfies Op.

It is worthwhile to note that Op has been restddtereby to the arity = 2, although more
than two contrary oppositions can be related td edloer satisfactorily. It is thus the case thgt e.
necessary, impossible and contingent propositiomg@ntrary to each other. Yet this is not the case
for most of the other relations like, e.g., conicamties: if a is contradictory withb and b is
contradictory withc, thena is not contradictory but, rather, identicaldoFor take “white” as an
instance of; then its contradictorip is “not-white”, and the contradictoyof the latter is “not-not-
white”, i.e. “white”, while the contrary of “whitefs “black”. We will return to these peculiarities
later on (see section 3.3).

For the time being, let us note not only that artyple of a valid relation of opposition can be
reduced to a set of 2-tuples (see [13] for a simidéionale with classical 3-ary connectives); but
also, that these relations can be constructed ghrantermediary operations within a more fine-
grained formal semantics.

3.2. Opposite as an operation

Taking the preceding example again, the conceplstéivand “black” stand into a contrary
relation. We propose in the following to investigdhe logical properties of “blacken”, that is, the
operation by means of which anything white is tdrireo something black.

Proposition 7
An opposite O is a mapping &(upon a relatuna of an opposition, such that it turns it into
the second relatutmof the given opposition: Op(O(@)) = Op(@,b).

A logic of colours has already been set up by Jasfsee [8]) in the same vein, where

chromatic oppositions are displayed by a set ofl@&mwo bitstrings that is going to be explained in
the following semantics.
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3.3. An algebraic semanticsfor oppositions and opposites

Our formal semantics has a twofold purpose: tordffo formal theory of meaning for any
sort of objects from mere individuals to usual sanes; to set up this semantics with the help of
Boolean algebra. While it ia locus classicuso say that only sentences make properly sense by
their truth-conditions, the following leads to a ma@omprehensive “non-Fregean” semantics that
characterizes the sense by means of questionsnamceties.

3.3.1. Question-Answer Semantics

A special attention is paid to the way in whichoimhation is conveyed about an individual,
concept, or sentence; indeed, how they are depimtesbme of their properties may have a deep
influence on their general meaning. This leads qoestion-dependent view of meaning, where the
value of any given information relies upon the saift properties put into focus.

Our Question-Answer Semantics (hereaf@AS) resorts to a non-Fregean theory of sense
and reference, assuming that no reference is b-¥altie. By doing sSoQAS is on a par with
Roman Suszko’s critics of the so-called “FregeainAX in [19].

Proposition 8

Themeaningof any objecta is determined by its senaed its referencesensebeing a finite
ordered seQ(a) = (q1(a),...gn(@)) of n questionabouta (wheren = 1) andreferencebeing the set
A(a) =(a(a),...an(a)) of corresponding@nswers

The standard, truth-conditional semantics can béeeisled as a special case of our
guestion-answer framework, by using the words “tared “false” as the metalinguistic predicates
of specific questions among other ones. By contrast non-standard semantics results in a
calculus of logical values while going beyond tmerpinent case of “truth-values”.

3.3.2. Boolean algebra of oppositions

Given thatm sorts of answers can be givenrtguestions, there ard" possible values for
eacha. For instance, asking= 3 questions abow and havingn = 2 available answers yields a set
of m" = 2° = 8 logical values includiné\(a) = 111, 110, ... until 000. The number of such logical
values is relative to the formal ontology within ialna is presented; that is, it depends upon how
many data are needed in order to be able to indteh, i.e. to make it logically different from any
other object in a given set. In a nutshellis a sufficient amount of questions #f(a) # A(b),
assuming that these questions can characterizhiagyneaningful by a finite set of properties (i.e.
the semantic predicates of a question). The peargerases of vague predicates and ensuing
paradoxes should lead to a Boolean counterparhfofite-valued matrices; but they won't be
considered in the present paper.

It is worthwhile to note that the objects are noiviided with asingle value like “true” or
“false” in QAS; rather, their reference amounts to an orderedbamation of singlesub-valueghat
stand for each of the answers. We stick to the &ovolalues 1 and 0 in the sequel, winerel is a
yes-answer andh = 0 a no-answer, while pointing out that a questiaewer game needn’t be
confined into such binary answers. Let us call byitstring any such structured string of ordered
answers; in the case of a Boolean algebra, eaclvadub of a string takes either 1 or O and is
thereby reminiscent of logical bivalence. At thensatime, them possible values of an object go
largely beyond two cases whenewer- 1 and result in something analogous with a maalyed
calculus of Boolean bistrings.

A calculus of logical oppositions is made posshiytenaking use of bitwise operations.

36



Proposition 9

N andu are the operations afiee andjoin upon values 1 and 0, such that 1 > 0. Tl
XNy = maxx.y);

XUy = min(x,y).

The Aristotelian relations can be rendered algebiy by asking questions about 1
compossibility of truthvalues between any o propositionsa andb. Assuming that every classic
(bivalent) proposition a can be translated by a disjunctive normal forA(a) =
(a1(a),a2(a),a3(a),a4(a)), to characterize such a propositional oppositietwbena andb amounts to
a questioning abouheir various compossibilities amoin = 4 possible cases, nhamely: wheta
andb can be true together; whetta can be true whil® is false; whethea can be false whilb is
true; whether andb can be false togethe
More generally, oppositions gceyond the sole logical category of propositions anel to be
defined in common terms of compossible - or noanswers for their arbitrary objeca,b,
irrespective of the sorts of questions to be asiwEuit then

Proposition 10
Opposition Op4,b) is a set O {CT,CD,SCT,SB} of relations to be define

10.1 by the logical values(a) andA(b) of any two objects andb such that, for ani™ question of
the same questiomrswer game, these stand into a relatiol

contrariety CT4,b) iff Oa:a(@=1=a(b)=0
contradiction CD4,b) iff Oa:a(@=1< a(b)=0
subcontrariety SCHE(b) iff Oa:a(@=0=a(b)=1
subalternation SB(b) iff Oa:a(@=1=a()=1

10.2. by the Booleans operations of meet and join, twggetvith the logical viues oftautology T
(only yes-anwers) anahtilogy L (only no-answers):

contrariety CT4,b) iff A@ NAMb)=_LandA(@ UAM®) = T
contradiction CD4,b) iff A@ NAMb) =1L andA(@ UAMb) = T
subcontrariety SCHE(b) iff A@ NAMD)# L andA(@ UAD) =T
subalternation SB(b) iff A(a) N A(b) =A(a) andA(a) U A(b) = A(b)

Two notes are in order, in connection with the abdefinitions of oppositior
On the one hand, a minimalimbe of questions is required to preserve the relatafnsontrariey
and subcontrariety between any objea, b.

Proof. Leti < 3, e.gi =2 ori = 1. Suppose théA(a) = 10. If A(b) = 00, then Ogb,a) = SB(,a); if
A(b) =01, then O,b) = CD(a,b); if A(b) = 11, then OH,b) = SB(@,b). No other relation occul
whenevei = 2, anda fortiori, withi < 2. [

The case where = 1 corresponds to the usual tr-functional semantics where eg
proposition is given a unique value or True) and O (for False), and this is the reasby McCall
rightly claimed in [10] thaho other operator than a contradic-forming one can be devised ir
On the other hand, the above definitions betrayea difference betweesubalternation (in
symbols: SB) and the other relations: not only ddes former not hold whela and b are
interchanged, since SB is notsymmetricalrelation; but also, then = 4 questions used
characterize opposition are not sufficient to idgréB. Indeed, the lter holds once every give
guestion aboutr and b can be answered positively or negatively together; an additiona
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condition must be added to it, to the effect thaiven uestion cannot be answered negati
aboutb once answered positively abca. By omitting this further constraint, the result is a m
relation of noneontradiction orindependencésee [2]) with respect to which <alternation is a
subcase.

Proposition 11
Op(@ab) is a relation ofndependenc IND iff:
IND(a,b) iff A@ NA®MO# L andA(@ UAD) % T

It may be replied that SB is not a relation of ogipon at all, in the light of the precedil
difficulty. For example, Demey & Smessaert arguefbl that the Aristotelian square is a comg
gathering of two different sts of relation from two separate ques-answer games, name
opposition Opd,b), and implication Imga,b). While Imp can be equated with the Tarskian rete
of consequence Cn, we argue that subalternatiomeambedded into the unique ques-answer
game defining logical oppositions (see section.8B¥)doing so, consequence is made a partic
case of opposition in the sense that its very defim calls for the relation Op. More precise
subalternation is formed by a kind double negationin accordance with our structuralist view
meaning as a synchronic set of different objeetsi$ see how negation takes in our algebraic
of opposition.

3.3.3. Opposites asnegations

As an alternative to the systematic treatment tjinosequent calct (e.g. in [11]), Piaget
paved the way to a general theory of negation kypgsing in [12] a <-called theory of
reversibilityand its corresponding INRC Group of gr-theoretical operations. In order to acco
for his genetic epistemology, Piaget clad that intelligent reasoning consists in transformg
structured elements with the help of a nur of basic operations such as switch and permute
A brief look at the former definitions of oppositi® (see Definition 10) shows how reversibility
on a par with our main concern.

To begin with, Piaget’s INRC Group is a set of £@ions N,R,Ctogether with a trivial
one I. Albeit restricted to the special case ofibyrpropositions of classical logic, this whole ide
can be rendered withiQAS asfollows.

Proposition 12

Let A(a) ={(ai(a),...an(a)) be an arbitrary object individuated hyjuestions, and let § be
switching operation of denial that applies to singaéluesa(a) such that 8(1= 0. Then the INRC
Group can be defined by operaticof switching and permuting upon every single vatiA(a):

Identity | (not switching, not permutin I(a) = {(a1(a),...an(a))
Inversion N (switching, not permutin N(@) = (8(au(a)),-..,8@n(a)))
Reciprocity (not switching, permutin R@) ={(an(@)),...,@(a)))
Correlation (switching, permuting C@) = (8(@an(a@)),..-,81(a)))

Each of these operations can be obtained throwgimbination of other ones. Tt

Proposition 13
INRC Group includes the following rules of iterati

|dentity I=NN=RR=CC=1
Commutation For every X,YO {I,N,R,C}, XY =YX
Idempotence For every XOO {I,N,R,C}, IX =X
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Complementarity NRC, NC=R, RC=N

While stressing the link between reversibility ahd opposit-forming operators O, let t
note the diffeence between the operationsdenial andnegation the former is applied to sing
values, whereas the latter applies to whole stradtvalues. Denial is a sort proto-negationthat
helps to form logical negations, just as Humbemstgnggested in ] by proposing to iterat
negation such that 8§ (A

Moreover, N exactly matches with a contradic-forming operator in that it proceeds
reverting any single value and thereby satisfiesdéfinition of contradiction (see Definition 1!
Nevertheless, there is no such -one correspondence bewveeach of the four operations
Piaget’s INRC Group and the four oppo-forming operators og {ct,cd,sct,sb}. Apart from th
special case M) = cd@), which opposite is constructed by R and C depenuis which logica
value these reversibility opeaas are applied to. TakirA(a) = 1000 as an example, a) = 0001=
ct(a) and C¢) = 1110=sb(a); while takin¢A(a) = 1100 entails that R} = 0011= cd(@) and Cg) =
1100= I(a).

More interestingly, negation can be characteriretivo ways through o opposite-forming
operators and, thus, in terms of opposition. Firgire than three n-trivial operators like Piaget’
ones can be devised to create opposite terra) from a; it consists in applying the operator
denial to some single values afout not all of them, the result of which is a distioa betweer
global and local negations (see [15,16]). Second, such usual-classical negations
paracompletgintuitionist) andparaconsister negations can be rendered within our logical the
of opposition. Starting from a result by Béziau [3]hiéis been shown that a logical hexagol
modal oppositions includes three sorts of logicagiations, namely: classical negation is
contradictionforming operator, whereas paracomplete and paratent negations correspond
the contrary- and subcontrafyrming operators, respectively. More generallgistinction is thus
made between extensional and intensional nega

Proposition 14

For any object:

The contradictiorforming operator cd anextensionabperator of negation such that there is ¢
oneb resulting from cd) = b.

The contrary- and subcontrafyrming operators ct and sct eintensionaloperators of negation
such that there are more thame b resulting from ct§) = b.

Proof. By Proposition 10.

A logical negation igparacomplet iff the Law of Excluded Middle (LEM) fails with it,.e. there it
a logical negation O such that LEla 0 O(a) is not tautological. LeAA(a) U A(O@)) # T the
algebraic counterpart of the statert that LEM is not tautological iQAS. If A(a) U A(O@)) z T,
thena(a) = a(0(a)) = 0 for some single valua;(a) of A(a). By definition of CTA(@) U A(b) # T
when ct@) =b. Hence LEM fails if C= ct.

A logical negation igparaconsister iff the Law d Explosion (LE) fails, i.e. there is a logic
negation O such that, for atyy a [1 O(a) does not entaib. Let SB@ [1 O(a),b) the counterpart of
LE. The failure of LE is to be proved by a countample such theA(a 0 O(a)) N A(b) # A(a [
0O(@)), i.e.A(a 0 O(@) # L. By definition of SCTA(a) N A(b) # Twhen scia) = b. Hence LE

fails if O = sct.
[ |

To sum up, the dmte launched by Slater about the meaning of Ibgiegation in [18] lec
to the construction of oppositerming operators, doing justice to the occurreat@or-classical
negations within the theory of opposition. Suchationale had been foreshadowby Piaget’s
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INRC Group, while noting again that the latter tyde clearly distinguished from the class op of
opposite-forming operators (i.e. there is no one-ocorrespondence between the pairs {R,C} and
{ct,sb}, respectively).

4. Objections (and itsreplies)

A number of objections can be raised against ouslevienterprise, from the structuralist-
minded view of meaning to the translation of staddagics intoQAS. Let us see a sample of
these, while attempting to give sufficient replies.

4.1. Opposition is nothing but incompatibility

Aristotle claimed himself that subcontrariety is@position “only verbally”, in contrast to
the genuine instances of contrariety and contriaahicThis suggests that an Aristotelian opposition
between any two sentencasandb is synonymous withncompatibility, in the sense that both
cannot be true at once. If so, then our logicabth@f opposition should be renamed as a theory of
non-identity or, better, a theory dlfferencethat accounts for the logical connections between
different objects within a structured set of obgegossible worlds, or lexical fields).

A look at the Platonic process of “diaeresis” skoanigue for our case, however. Indeed, the
dialectic process of definition can be seen asaahdonic question-answer game where different
objects are more and more individuated by incregtie number of questions characterizing them.
Moreover, it has been seen that the operator ofabl@napplies to a single Boolean value by
switching it from 1 to O (and conversely), justthe contradiction-forming operator cd applies to
ordered values.

In a nutshell, our algebraic view of logical values structured bitstrings helps to explain
why opposition produces the meaning of differenjecots without implying their mutual
incompatibility. This also means that contradictisrthe primary opposition underlying any other
one, including the “verbal” case of subcontrariatyl even subalternation.

4.2. Consequence isnot subalter nation

That a man is baldntailsthat it is not haired, in accordance to the cagtralation between
“bald” and “haired”. Indeed, “not haired” is the ntcadictory of “haired” and, given that any
contradictory of a contrary is a subaltern, thetatictory of the contrary of “bald”, “not haired”,
stands for its subaltern.

haired bald

not bald not haired

In semi-formal words: ct(haired) bald, and cd(baldy not bald; hence cd(ct(haired))sb(haired)
= not bald. This calculus is another evidence ferftct that Piaget’s reversibility operators differ
from our opposite-forming operators, by passingofar as the latter are not commutative.

Proposition 15
Let ~ the symbol for classical negation, for paracomplete negation, and — for paracondisten
negation. Then:
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15.1 [({a) :=cd@); = (a) :=ct(@); —(@) = sct@)
15.2 subalternation results from the double mixed riegai- (a) = cd(ct(a))
15.3 the members of op are mmmutativeoperators: for any,y [ {ct,cd,sct,sb}x(y(a)) # y(x(a))
(wherex#Yy)

A proof of 15.3 can be given thanks to the intenaldehavior of the so-called non-classical
negations, where there is a one-many mapping fhenmniput value to the resulting opposite outputs
(between brackets in the sequel).

Proof. By induction upon the members of the class oppplosing-forming operators.

Let A(a) =1000. Then:

ct(a) = {0000,0100,0010,0001,0110,0011,0101}
cd(ct@)={1111,1011,1101,1110,1001,1100,1010}

cd@ =0111

ct(cd@)) =0

Therefore cd(cH)) # ct(cd@)).

(The reader is pleased to go through the entinediine proof.) |

The sole exception is the case where the itergbedator is the extensional case of contradiction,
reproducing the classical law of double negatio®AS: cd(cd@)) := ~~(@) = a. It is obviously not

so with non-classical negations, especially wite garacomplete operator that famously violates
the aforementioned inference rule: cié a.

It could be replied to all of this that subalteroatis nothing but a very restrictive
counterpart of logical consequence. Whatever thse gaay be about the crucial properties of
consequence, it is taken to be granted that outeBadreatment is on a par with the semantic view
of logical consequence &wmith-preservation Besides, the former helps to abstract from theono
of truth by claiming that any yes-answer to premiseust lead to the same answers in the
conclusion. In other words, any object occurs am@sequence whenever it confirms anything
accepted about its premises. For this very reasmmsequence, entailment, and subalternation are
equated with each other from our point of view.haligh there might be alternative views of
consequence, let us argue that Q&S should be able to account for such non-standadores by
changing the central clauses of its question-angamsre.

4.3. Thereisno calculusfor opposite-forming functions

It has been noted in the preceding section thatt mbshe opposite-forming operators
proceed as one-many mappings, that is, operatdahsome input value and several output values.
Mathematically speaking, this is a sufficient reasm establish that op is not a profuanctiont only
one-one or many-one mappings are entitled to Bedchly this name, whereas one-many mappings
do not. This is not a sufficient reason to concltitkt no calculus can be devised for a theory of
opposition and its constructive operators, howekelowing the calculus of iterated negations by
Kaneiwa [9], and by analogy with the arithmetic gtion of square root, it clearly appears tit
has a definite number of output values, i/d.= {-2,2}. In the same line, a definite number of
valuesby,...,b, can be assigned to any oppositeacduch that o@) = {b,...,b,}. This calculus
leads to a set op afultifunctions(or many-valued functions), instead of usual fiord.

Admittedly, the resulting calculus is comptead by a more complex range of possible values.
For instance, how many contraries of an increasiitfjh of bitstrings there can be should be an
increasing set of outputs ... or the null set, iredhe input value couldn’t be said to have corggari
at all. To clarify this complex situation, let wetuirn to the structured values and their set-thieate
properties.
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Proposition 16
Let Card be the symbol of cardinality. Then for aajue ofa, Card(cdé)) = 1.

Proof. By Proposition 14, every logical object cannowénabut one contradictory. Hence the
cardinality of cdg) is 1.

Proposition 17
Let m, n and y&) be the number of answers, questions, and yeseaasw the logical value d,
respectively. Then for arg; Card(ct@)) = m™® - 1.

Proof. By truncating the yes-answekga).

According to the definition of contrariety in Pragition 10, any yes-answer ta"aquestion abota
entails a corresponding no-answer for its contbarfhat is,ai(b) = §(1) = 0 whenevegr;(a) = 1. By
truncating every valuation wheega) = 1, there remains a subsetmf(a) cases with only no-
answers fora, i.e. ayi(@) = 0. Thenayi(b) = 1 or 0, which yields a maximal number of possible
valuations while excluding the special case witly@a;(a) = 1 (@ andb would be contradictories,
otherwise). As there ana" possible valuations fom sorts of answers anal questions, the non-
truncated bitstring of-y(a) elements results in a set of™Y® possible valuations minus the
aforementioned excluded case with only yes-answiasce Card(cg)) = m™® - 1. |

Example: letA(a) = 0100, withm=2,n=4, and y4) = 1. Hence:
a(a) = 1, thereforeay(ct(a)) = 8(1) = O; by truncating the latter case, there remaisstafn-y(a) =
3 cases whera,x(a) = 1 or 0. That is:

ay(a) a(a) ag(a) as(a)
A(Q) 0 1 0 0
A(ct(@)) 0 0 0 0 1)
1 0 0 0 (2
0 0 1 0 3
0 0 0 1 (4)
1 0 1 0 %)
1 0 0 1 (6)
0 0 1 1 7)
1 0 1 1 (=cd@))

Card(ct@)) =m™®@ - 1=2*1.1=2°-1=8-1=7, namely:

ct(a) = {0000,1000,0010,0001,1010,1001,0011}

Note: A(a) = 0100 andA(b) = 0000 stand into a relation of contrariety and #feb@ation at once,
since we have both Cap) = CT(b,a) and SBb,a). This is allowed by the definitions of CT and
SB, however (see Proposition 10), merely excludimgcase whera andb cannot bdalseat once
(by CT).

Proposition 18
Let m, n and y&) be the number of answers, questions, and yeseaasw the logical value dd,

respectively. Then for arg; Card(sctf)) = m® - 1.

Proof. By truncating the no-answersAta).
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According to the definition of subcontrariety inoPpsition 10, any no-answer toi"a question
abouta entails a corresponding yes-answer for its sulaonb. That is,a;j(b) = §(0) = 1 whenever
a(a) = 0. By truncating every valuation wheaga) = 0, it remains a subset ofay(cases with only
yes-answers faa, i.e.ani(@) = 1. Thenayi(b) = 1 or 0, which yields a maximal number of possible
valuations while excluding the special case witly@a;(a) = 0 (@ andb would be contradictories,
otherwise). As there ana" possible valuations fom sorts of answers anal questions, the non-
truncated bitstring of W) elements results in a set of® possible valuations minus the
aforementioned excluded case. Hence Cara@{get(m’® - 1. |

Example: letA(a) = 1011, withm=2,n=4, and y4) = 3. Hence:
a(a) = 0, thereforeay(sct@)) = 8(0)= 1; by truncating the latter case, there remaisst @fn-y(a) =
3 cases wheray (@) =1 or 0. That is:

a(a) a(a) as(a) au(a)
A(@) 1 0 1 1
A(sct@) 1 1 1 1 (1)
0 1 1 1 (2
1 1 0 1 (3)
1 1 1 0 (4)
0 1 0 1 ()
0 1 1 0 (6)
1 1 0 0 (7)
0 0 1 0 (=cd@)

Card(sctd)) =m"®@ - 1=2°-1=8-1=7, namely:
sct@ ={1111,0111,1101,1110,0101,0110,1100}

Note:A(a) = 1101 andA(b) = 1111 stand into a relation of subcontrariety amnubfternation
at once, since we have both S&bJ = SCTp,a) and SB&,b). This is allowed by the definitions of
SCT and SB (see Proposition 10), merely excludirgdase whera andb cannot berue at once
(by definition of SCT).

The above computations nicely match with the dediniAristotle gave to subcontraries as
“contradictories of contraries” (see e.g. [3]). Fiplural expression should be clearly distinguished
from the singular characterization of a subalteymh& “contradictory of a contrary”.

Proposition 19

For any objectg,b:

19.1 a andb aresubcontraryto each other iff their contradictories are comtrip each other, so
that:

SCT@b) = CT(cd@),cd())

Proof. According to Proposition 10, contradiction pratedy switching every answey(a) such
thata(cd@)) = 8(@(a)). According to Proposition 17 and Proposition tt® non-truncated subsets
of contraries and subcontraries are respectiveth shata,i(a) = 0 anda,i(a) = 1, i.e.aq.i(a) =
8(ani(@)). Now these are contradictory to each other. &loee, SCT(a,b) = CT(cd(a),cd(b)). W

19.2 b is asubalternof a iff b is the contradictory of a contrary afso that:

Card(sbd)) = Card(ct@))
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Proof. By Proposition 15.2, sh] = cd(ct@)). There is only one contradictory of any opposgien
op(@) of a, by Proposition 16: Card(cd(ap}) = Card(op&)), hence Card(sh)) = Card(ctf)).

An alternative proof of the later result can beaaitd through the definition of subalternation by
Proposition 10: each yes-answer being preservédeirsubaltern shj, truncate every yes-answer
of a while excluding the case wheagi(sb@)) = 1 (a and sbg§) would be identical, otherwise). Thus
compute the non-truncated bitstring of no-answensia®@ - 1.

Example: letA(a) = 0100, withm=2,n =4, and y&) = 3. Hence:
a(a) = 1, thereforeay(sb@)) = 1; by truncating the latter case, there remaisgtaofn-y(a) = 3
cases wherae, (@) = 1 or 0. That is:

ay(a) a(a) ag(a) as(a)

A(a) 0 1 0 0

A(sb@)) 1 1 0 0 1)
0 1 1 0 2)
0 1 0 1 3
1 1 1 0 (4)
1 1 0 1 %)
0 1 1 1 (6)
1 1 1 1 (7)
0 1 0 0 (=a)

Card(sbd)) =m®@ -1=22-1=8-1=7, namely:
sct@) = {1100,0110,0101,1110,1101,0111,1111}

5. Conclusion

The gist of the present paper relied upon an a@gelanalysis of opposition, in the name of
a structural view of meaning. Not everything hasrbeaid about it, admittedly: although logical
consequence is depicted as a by-product of therdamgation of opposition, no counterpart of
Tarski’s systematic work about consequence is abkluntil now with respect to opposition.

This should lead to a twofold investigation in fatgorks. Firstly, a general theory of
iterated oppositions fon iterations, to generalize the above section 4@ it multifunctional
calculus of opposites: what can be the contramhefsubcontrary of the subaltern of some olgect
for instance? Secondly, the construction of anrabsbperator of opposition in line with Tarski's
operator of consequence (see especially [21]):tbare be such an operator to be characterized
either in logic, or algebra, or topology?

Whether what has been displayed in the paper bgltmghe area of algebra or logic of
opposition is questionable. For one thing, our falritheory of opposition crucially relies upon
Boolean bitstrings, and this has much more to db @aligebra than logic. At the same time, such a
distinction between logic and algebra assumes ttiatformer be considered as a pdirCn)
including a formal language (set of formulas) L amdasic operator of consequence Cn upon
elements of L. A next step towards a more comprakienapproach of logic would consist in
embedding logical consequence within a broader{pa@p), accordingly: just as consequence has
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been investigated in the form of either a relabo@an operator [20,21], opposition could be viewed
from the perspective of a general relation Op geeral opposite-forming operator op.

Finally, our treatment of meaning through Booleamslations of information amounts to a
finitist version of possible-world semantics, iag algebraic semantics where models are finite sets
of sets of objects. Meaning as a set of lexicdti$ies thus treated by a finite set of overlapping
guestion-answer games about definite objects. |ftlsen whoever aspiring to a general model
theory should blam@AS for limiting the use of logic to finitely many mets. Two replies could
be given in turn: if finite question-answer gamesd to finitely many-valued sets of objects, then
their infinite counterparts might lead to infingaihany-valued objects (by analogy to the infinitely
many-valued matrices); eventually, our constructreatment of meaning as a questioning process
is played by bona fide speakers who don't practit@ infinite set of data. For who plays with
infinity, if not God (if any)?
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