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Abstract:

A general approach to the synthesis of an optimal order of executing jobs in engineering systems with
indeterminate (interval) times of job processing is presented. As a mathematical model of the system,
a two-stage pipeline is taken whose first and second stages are, respectively, the input of data and its
processing, and the corresponding mathematical apparatus is continuous logic and logic determinants.
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1. Introduction

The study of engineering systems begins with determining the dependence of the performance factor
of system on its parameters. This dependence can be used for estimating the performance factor of
the system, to analyze it qualitatively, to optimally synthesize the system, etc. As a rule, the existing
estimation methods for performance of engineering systems are oriented only to calculating perfor-
mance factor of system and are not meant for their analysis and synthesis [1].

In [2, 3] there is an approach for studying various systems based on pipeline model of schedul-
ing theory and on the mathematical apparatus of continuous logic and logical determinants, which
makes it possible to derive an observable and easily calculated expression for system performance
and to carry out qualitative analysis of the effect of system parameters on its performance and on its
optimal synthesis according to the criterion of best performance. In this case the time parameters are
assumed to be deterministic. In practice, these parameters are in many cases nondeterministic,
which substantially hampers the study of system.

We consider an extension of the general approach for optimal synthesis of engineering sys-
tems with uncertain (interval) type time parameters to nondeterministic case [4]. Under application of
this approach to optimal synthesis of engineering systems with interval time parameters this problem
reduces to solving similar problems for two systems with deterministic time parameters equal to the
upper and lower bounds of the corresponding intervals.

2. Problem Statement

Consider a system operating in batch mode and let the batch contain » different jobs 1,...,n. We em-

ploy simplest two-phase model of system. So, in first phase performed by first system unit first opera-
tion, namely inpuiting of the initial data, is carried out; further, in other phase which performed by the
second unit of system the second operation is carried out — transformation and processing of these
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data in various functional units of the system (processor, main memory, and external memory) and
the output the result. The units are assumed to operate consecutively. Each job i (i = I,_n) firstly goes
to the first unit, where first operation is full performed, and after that goes to second unit, where the
second operation is carried out completely.

The time of execution of the first operation on arbitrary job i is assumed to be known inexact-
ly and to be determined by a closed interval a; =[a;,a,,] of all possible values of this time. In simi-

lar way the time of execution of the second operation on job i is set: l;l =[b,,b;,]. So, the first unit
starts the execution of the current job immediately after end of the previous job, i.e., it operates
without idle times, whereas the second unit starts the execution of the current job j only after the
job j leaves the first unit, i.e., in the general case it operates with idle times. It is required to choose
an order of jobs in the system under which its best performance is ensured, i.e., ttotal execution time
of all jobs is minimum.

As in determiniscic case [3, 6], the optimal order of jobs can be assumed to be permutable, i.e.,
jobs must pass through two units in same order. Assume that execution times of first and second op-
erations on an arbitrary job i are exact and are equal to a, and b, , respectively. Let for a pair of jobs

(i, j) the order of passage through the first unit be i — j, and the order of passage through second
unit be opposite: j —i. Let us change the order of jobs passing in the first unit by placing job i after
j and moving job j (together with the jobs located earlier between i and ;) to the left by length
of freed time interval g, . In this case the interval of the execution of one of the jobs 7, which are
subject to permutation, is moved to the right. However, it then ends at the time of completion of the
execution of the job j in the first unit (before permutation, i.e., as previously, before the time of be-

ginning of the execution of job in the second unit). Hence, a change in the order of jobs in the first
unit does not affect the sequence of jobs in the second unit. Therefore, the same order of passage of
jobs through the two units can be chosen without changing the resultant time of execution of all
jobs. It means that for deterministic execution times of operations the optimal order in the sequence of
jobs passing can be sought within the set of permutational orders of jobs. This conclusion is true for
arbitrary deterministic execution times @; and b, of operations inside given intervals a; =[a,;,qa;, ]

and 17, =[b;,b;,]. Consequently, in accordance with the conditions of the problem, it remains valid if

times of operations are assumed to be equal to the indicated interval values.

Thus, the solution of the stated problem reduces to finding an external permutation
P, =(i,iy,.,0,), i, €{l,2,...n}, (1)
of n given jobs that determines the order of jobs in the system, which is the same for its two units. The
symbol 7, in expression (1) is the index of the job occupying the & -th place in the ordered sequence.

3. Logic Algebra of Nondeterministic Quantities and their Comparison

The problem solution requires some facts of the logic of nondeterministic interval quantities and of
comparison theory for these quantities [4]. We shall proceed from continuous logic for determinis-
tic (point) quantities [7]. The basic logical operations on these points are disjunction v and conjunc-
tion A that are defined in following formulas:

av b=max(a,b),

2

Here a,b € C, and the set C is an arbitrary interval of real numbers. Operations (2) obey the

a Ab=min(a,b)
majority of laws of discrete logic, namely
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ava=a, arna=a (tautology) 3)

avb=bva, anb=bnra (commutative law) 4)
(avbyve=av(bvc), (anbyrc=an(bnc) (associative law) (5)
av(bnrc)y=(avb)yan(ave), an(bvcec)y=(anb)v(anc) (distributive law)  (6)
av(anb)y=a, an(avb)=a (7)
at(b)c)=(a+b) (a+c), (8)
a—(b)c)=(a=b)] (a~c), (9)
a-(ch):(a-b)X(wc), a,b,c>0, (10)
—a-(b;\/c)z(—a-b)C(—a-c), a,b,c>0, (11)

A special partial case of the equation (11) for a=1 is the following law:

~(0Y )= (0] (o), (12)

We now pass to continuous logic for interval quantities. In this case the continuous-logical
operations of disjunction and conjunction (2) are generalized as set-theoretic constructions:

5v5:{a\/b|aec7,bebN};

Gab={anblacd,beb).

(13)

Here a =[a,,a,] and b= [b,,b,] are intervals regarded as the corresponding sets of points

(values) belonging to them. According to [4], operations on intervals (13) obey the same laws (3)—(12)
as the operations on point quantities (2). In particular, distributive laws (8) and the law (12) take form:

G+ )= (@+b)) (@+o), (14)
~(bV &) =(-b)](-2). (15)

Due to [4] the results of the logical operations of disjunction and conjunction on intervals (13)
are calculated by the formulas

avb =la,a,]v[b.b,1=[a,v b ,a,vb,], (16)
aAbN:[al’aZ]/\[blabz]:[al/\blaaz/\b2]' (17)
We briefly present some important facts of comparison theory for intervals. [4]
1. For any pair of intervals @ =[a,,a, ] and b = [b,,b,] the equivalence relation
(Gvb=G)< (GAb=b), (18)

holds, i.e., like point quantities, the intervals are compatible (in the sense that if one of the two
quantities is maximal, then the other is minimal and vice versa).
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2. Pairs of intervals @ =[a,,a,] and b= [b,,b,] can be in relations «greater than» and «small-
er than» defined in the same way as in the case of point quantities by the such equivalence:

(G2b)< (Gvb=ad,inb=b). (19)

3. In accordance with (19), any two intervals @ and b that are in relation @ =5 or G <b are
said to be comparable. Otherwise @ and b are incomparable.

4. For intervals a =[a,,a,] and b= [b,,b,] to be comparable and satisfy the relation a > b it
is necessary and sufficient that system of inequalities (@, >b,a, >2b,) holds, and for @ and b to be
incomparable it is necessary and sufficient that at least one of systems of inequalities
(a, <by,a, >b,) or (b <a,b, >a,) are true. Thus, only the intervals displaced relative to each other

along number axis are comparable; in this case interval displaced to the right is greater. If one of in-
tervals overlaps other the intervals are incomparable.
5. In a system of intervals a,,a,,...,d, the interval @, is said to be maximal (minimal) in-

terval if it is comparable with other intervals a,,..,q, and is in relations a, >a,,...,a, 2a,
(@, £a,,...4; <a,) with them.
6. It is necessary and sufficient in system of intervals @, =[q,,4,], & =[a,0,]-...a; =[a41,%,]

for interval @, be maximal that the system of the relations holds:

k k

an=wvdag ap=vdp, (20)
i=1 i=1

and for @, to be minimal it is necessary and sufficient that following equations is true:

k k

an =A4%, a4 =AN4, (21)
i=1 i=1

4. Derivation of Optimality Conditions

In the previous case we define a relationship between the execution times a;, Ei ,a B b ; of two arbi-
trary jobs (i, j) under which they must be executed in order i — j in optimal sequence of jobs P(#n)
(1). Let B, =(i,...,i,); k <n, be initial section of P, and let 7 (P,) and 7,(P,) be time intervals con-
taining all possible times of completion of sequence P, in Ist and 2nd units. Because
P, =(P,,i;,,), we can write

TP =1 P+, L(Bu) =14 (P) v T(BI+b,,. (22)

e+1?

Here v is disjunction of type (13). The recurrence relations (22) make it possible to calcu-
late the total time of execution for any order of the sequence of jobs P, in form of a time interval

T(2,n)=1,(P,). Let P =(iycuriysiy jisornsjy,) @A P2 = (ipyennsiys Ju jioeens j,) bE two sequences of jobs
passing through the system that differ only in order of execution of jobs i and j occupying the (k +1)

-th and (k +2) -th positions in sequence. Let us find out when Pn1 i1s more preferable than Pnz, 1e.
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when jobs i and j must be executed in order i — j (and not vice versa). The corresponding condition
is written as

5L(PLL) S5 (PL,). (23)

According to (22), the sequence P, is more preferable than P} if the time or passage of its
regulated subsequence P,., through two units is less than that of P_,,. To write preference condition
in explicit form we must express #,(P,,,) via the time parameters @, and l:l of jobs. Let
4L (P)=7 . Then 5(R)=7+A , where A :l;ik . By the fact that P/, =(P,,i) and

Pk1 = (Pk1 1-1)=(P,,1,j), on applying twice recurrence relations (22) we obtain

7 (¢ pl T 7 1 P~ =LA 7.
Lt(Py)=t+a; (P =t +a;)v(t +A))+b;;
~ 1 ~ ~ N.

G(PL) =T+, +@,) VI(E+3) v (T +R8)+b 11
We similarly determine haracteristics P, and P_,; in this case we have
B(PLy) =T+ +a,)VI(F+a) v (7 +A)+b;1}+b;.

The substitution of the above expressions into the formula (23) yields explicit form of the
condition under which the jobs 7 and ;j in the optimal sequence must follow in the order i — ; :

(T +a+a)VI(T+T)v T +A)+b, 13 +b, <{T+a,+a3,) VT +ad,)v (T +D8)+b,]}+5,.(24)

To simplify inequalities (24) we apply the laws (8), (12) and we can take by (8) the term 7
outside the parentheses on both sides of (24). On canceling it, we find

(@ +a) V@A) +b]}+b; <{@+a) V@A) +b,]}+b,.

We now take the terms a;,a; ,l;,. and a;,ad;, b ; outside the curly brackets on left- and right-
hand sides of the new inequality, respectively. On canceling the common terms on the two sides we
write

(-b)v(A-a,-a;)v(=d,)<(-b,)V(A-G, )V (-G;).

1

Based on law (12), we take the minus sign outside all brackets in the last inequality and mul-
tiply its left- and right-hand sides by -1, which results in

@ Ab, A +d; -N)<T; b A(@, +3 - A). (25)

The symbol A in (25) is conjunction (13). Let us solve inequality (25). We rewrite it in the
form
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LAD<MAD, (26)

where L = a, N Iz M=a ; /\l;i ,D= a4 +d; —A. The logical inequality (26) for interval quantities is
solved by the same separation method as for point quantities [7]. We obtain L<M (always), L>M

(for D<M ) for (26), and, on returning to the original quantities, we derive the following solutions
to (25):

l

~

b;, 27)

a,Ab < @ nb,, (28)

S
IN

j =4

T+ j—A

a; n

N
Sl
N>

The inequality (27) involves only time characteristics of jobs i and ;. If (27) holds then jobs
i, j in the optimal sequence P, follow in the order i — j irrespective of the order of the other jobs.
Besides the characteristics of i and j, inequality (28) contains the parameter A depending on subse-
quence P, preceding i and ;. Fulfillment of condition (28) means that jobs i and j in the optimal
sequence P, for execution of jobs follow in order i — j only in the case when the preceding sub-
sequence P, has the corresponding value of the parameter A. It is clear that for optimal scheduling
of jobs it is more advisable to use condition (27) stated as the following independent theorem.

Theorem 1. For jobs i and j in optimal sequence of execution of all n jobs in a two-unit
nondetermined system with execution times of first and second operations of job i in form of inter-
vals @, =[a;,a;,,] and b =[b,,b,] to follow in the order i — j irrespective of the order of execution

ofother jobs it is necessary and sufficient that the time parameters ; and ; satisfy condition (27).

5. Reduction to Deterministic Problems

We will reduce the optimality conditions for the order of execution of jobs in the nondeterministic en-
gineering system in question that are established in Theorem 1 to the well-known optimality condi-
tions for the order of execution of jobs in different deterministic systems [4]. Consider two two-
unit deterministic systems. Let the execution times of the first and second operations on an arbitrary
job i in the first system be equal to the lower bounds a; and b, of the times a, and Z;l of execu-
tion of these operations in given nondeterministic system, respectively, and let in other systems these
times be equal to the lower and upper bounds a;, and b;, of the times a; and 1;1 . We will call these

systems accordingly the lower and the upper deterministic boundary systems relative to the nonde-
terministic system.

Theorem 2. For jobs 7 and j in optimal sequence of execution of all # jobs in two-unit non-
determined system with execution times of first and second operations of job i in form of the inter-
vals a; =[a;,a,,] and b, =[b,,h,] to be carried out in the order i — j irrespective of the order of

execution of the other jobs it is necessary and sufficient that jobs i and j be carried out in same

order irrespective of execution of other jobs, i.e. in order of execution in the optimal sequences for
execution of all jobs in two deterministic two-unit systems, namely in lower and upper boundary
systems. Theorem 2 implies following theorem.
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Theorem 3. For a type (1) permutation P, = (i,,...,i, ) be an optimal sequence of execution of
n jobs in a nondeterministic two-unit engineering system with execution times of the first and
second operations on job 7 in form of intervals a; =[a;,a;,] and 51 =[b,;,b;,] it is necessary and
sufficient that P, be also the optimal sequence of the execution of n operations in the lower and upper
boundary systems. Theorem 3 implies the two theorems below.

Theorem 4. The set M of all optimal sequences of n jobs in a nondeterministic two-unit
computing system with execution times of the first and second operations of job i in form of inter-

vals a; =[a;;,a,,] and bNZ =[b,,,b;,] 1s the intersection of the sets M, and M, of the all optimal
sequences of n jobs in its lower and upper deterministic boundary systems.

Theorem 5. For an optimal secuence P, = (i,,...,i,) of execution of all n jobs to exist in a
nondeterministic two-unit computing system with execution times of the first and second operations
of job i in form of intervals a; =[a,;,a;,] and l;, =[b,,b,] it is necessary and sufficient that the
intersection of the sets M, and M, of all optimal sequences of the execution of 7 jobs in its lower

and upper deterministic boundary systems be nonempty.

Theorems 4 and 5 imply the following direct solution algorithm for the stated problem, i.e. for
finding an optimal sequence P, = (i,,...,i,) of execution of n jobs in a nondeterministic two-unit sys-

tem with execution times of first and second operations of job i in the form of intervals
a; =[a;,a;] and gz =[bi,b;2].

Step 1. Finding the set M, of all optimal sequences of execution of n jobs in lower boundary
system of original system with execution times a; = a; and b, =b,;,, which are the times of Ist and
2nd operations of job i. The well-known solution methods for deterministic two-stage problem of
scheduling in industrial systems are used [2, 3, 5, 6].

Step 2. Finding the set M, of all optimal sequences of execution of » jobs in upper boundary
system of the original system with execution times a; = a;, and b; = b,,, which are the times of 1st and
2nd operations of job i, using the same methods as in Step 1.

Step 3. Finding the intersection M, "M, of the sets, which is the set M of all optimal se-
quences of execution of n jobs in the given nondeterministic two-unit system. If M # & then any
sequence P, € M is desired optimal sequence of execution of n jobs. If M = then there are no

such sequences.
The suggested direct solution algorithm for the problem requires exhaustion when determining

the intersection of the sets M, and M, , and therefore it is efficient only for |M 1| = |M .| =1 or for
|Mz| and |Mu or |Mu
necessary to pass to the application of decision rules making it possible to find an optimal sequence
of execution of jobs in a nondeterministic computing system without exhaustion.

close to 1. In case |M / is large, the direct algorithm is ineffective, and it is

6. Construction of Decision Rules

Consider an arbitrary two-unit deterministic computing system with the times of execution «; and
b, of the first and second operations of job i in the first and second units respectively. We split the set
of jobs into first, second and third classes of jobs: (a; <b,),(a; >b,) and (a; =b;). Then the decision

rules for finding optimal sequences of execution of all jobs in a system are based on the schedule
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presented in the Table 1. An arbitrary cell (p,q) of the table contains a condition under which two
arbitrary jobs i and j (belonging to the p -th and g -th classes respectively) are placed in order i — j

in optimal sequence. The schedule makes it possible to state a non-exhaustive decision rule for finding
all optimal sequences of jobs for any set of jobs.

Table 1
Class of job Order of execution
1 2 3
1 a;<a; Always always
2 never b, >b; b, >b,
3 a;<a; Always always

For example, the cell (1,1) shows that for the set of jobs of the first class the optimal execution

sequence is obtained by arranging job i in increasing (more precisely, nondecreasing) order relative to
parameter «, .

Let us apply a similar approach to a given nondeterministic two-unit computing system with
execution times of the first and second operations of job i in the form of intervals a; =[a;,,a,,] and

I;,- =[b;,b;,]. Along with this system consider its lower and upper deterministic boundary
processing systems (Table 1). The former has execution times a,; and b;, of the 1st and 2nd opera-
tions of job i, and for the latter these values are a,, and b,,. By Theorem 3 an optimal sequence of
execution of jobs in a nondeterministic system is also an optimal sequence of the execution of jobs in
its lower and upper deterministic boundary systems. Therefore, the optimality condition for a se-
quence of jobs in a nondeterministic system is the intersection of similar conditions for its lower and
upper boundary systems.

Consider lower boundary system. In accordance with presented technique we split its set of »
Jjobs into jobs of the first, second and third classes: (a;, <b;,), (a; > b;) and (a;; = b;) respectively.
Let us compile the schedule of execution for this system (see Table 2).

We now consider the upper boundary system. By the same technique we split its set of n
Jjobs into jobs of the first, second and third classes: (a;, < b;,), (a;, > b;,) and (a;, =b;,). We thus
obtain Table 3 of the schedule of operation of this system.

The schedule for a nondeterministic processing system is intersection of schedules of its lower
(Table 2) and upper (Table 3) deterministic boundary systems of the original system. This table is
compiled in the following way. Using the combination of some cells (p,,q;) and (p,,q,) of Ta-

bles 2 and 3 respectively we form the cell ((p,, p,).(q,,q,)) of the desired table into which the
condition equal to the intersection of the conditions in the cells (p,,q,) and (p,,q,) of Tables 2 and

3 respectively is inserted.
If the inserted condition in the cell contains the words «always» and «never» it is simpli-
fied in the following way: 4 Nalways= 4, A N"never = never, A4 is arbitrary.
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Table 2

Class of job Order of execution

1/ 2] 3/
1 a; <aj Always always
21 never by 2b, by 2b,
3/ a; <aj Always always

Table 3

Class of job Order of execution

lu 2u 3u
lu ay <ajp Always always
2u never by 2bj, by 2bj,
3u an <aj, Always always

The presented procedure is carried out for all possible combinations of cells in Tables 2 and 3.
As a result schedule for nondeterministic processing system (Table 4) is constructed. In each cell
((p;»p,)(q,,q,)) of the Table 4 the complex condition is presented under which the arbitrary jobs i
and j (where the job i belongs to the p,-th class of the lower boundary system and to the p, -th
class of the upper boundary system and job ;j belongs to the g, -th class of the lower boundary sys-
tem and to the g, -th class of the upper boundary system) are placed in an optimal sequence of exe-
cution of jobs in the order i — j. The conditions in Table 4 are given in the form of inequalities for

the boundaries of intervals determining the execution times of jobs and, when possible, in the form
of inequalities for the indicated intervals.

For construction of non-exhaustive decision rules for determining all optimal sequences of
executions of jobs in nondeterministic systems we use Table 4. In contrast to deterministic systems an
optimal sequence of execution of jobs in nondeterministic systems may not exist. This is due to the
fact that different intervals (execution times of jobs) may not be compaprble and may not have
minimal and maximal intervals. The decision rules for each set of classes of jobs forming the set of
jobs performed in the nondeterministic system are constructed separately.

7. Example

We will construct the decision rule for finding the optimal sequences of the execution of jobs belong-
ing to the single class (1,,1,). The condition in the cell ((1,.1,),(1,,1,)) of Table 4 shows that the

jobs i in the desired sequences must follow in nondecressing order of the interval parameter
a; =la;,a;,] or, which is the same, in nondecreasing order of the two parameters: a; and a;, .

What has been said implies the following rule: arrange all jobs 7 in nondecreasing order relative to
the parameter a,, and thus obtain the corresponding set M, of ordered sequences of jobs; arrange all

jobs i in nondecreasing order relative to the parameter a,, and thus obtain a similar set of sequences

M , ; take the intersection of the sets M, and M, which gives the desired set of optimal sequences
of jobs.
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Table 4

Class [Order of execution
of job |1/1u 12u 1/3u 20u 202u 2[3u 3/1u 312u 313u
u  |a, < a; la;<a; |a;<a; |a;<a;, always |Always |a, < aj, always lways
112u |never ay <a; la;<a;, [pever by 2 b, lby 2b;, pever by 2by lbyy 2b),
by <bjy by <bjy
13u g, < a; la;<a; |a;<a; |a;<a;, always |Always |a,, < aj, always lways
21lu  |never never never b, = bj.1 b, = bj.1 b, > bj1 b, < bj.1 b, > bj1 by 2 b/1
a,-zéaj2 a,-zéaj2
2[2u never never never never EI > Nj gl > Nj never gl > N] EI > Nj
2[3u |never never never b, < bj1 b, = bj1 b, = bjl b, < bj1 b, = bj] by 2 bjl
a,-zéaj2 a,-zéaj2
3Mu g, < a; lag<a; |a;<a; |a;<a;, always [|Always |a, < aj, always [lways
3[2u never ay<a; la;<a;, [pever by 2bj,y |biy 2b;, pever by 2b;y|by 2b),
by <bjy by <bjy
33Bu |a; < a; la;<a; |a;<a; |a;<a;, always |Always |a,, < aj, always lways

8. Conclusion

In this article we give some theoretical facts -in the field of jobs sequences in the systems. They are
touch some problems connected with uncertainty of time parameters of systems. It is shown that the
problems can be reduce to complete determined case.
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