

ISSN 2299-0518 41

Studia Humana

 Volume 4:3 (2015), pp. 41—50

DOI: 10.1515/sh-2015-0019

The Swarm Computing Approach to Business Intelligence

Andrew Schumann

University of Information Technology and Management in Rzeszow,

Poland

e-mail: aschumann@wsiz.rzeszow.pl

Krzysztof Pancerz

University of Information Technology and Management in Rzeszow,

Poland

e-mail: kkpancerz@gmail.com

Andrzej Szelc

University of Information Technology and Management in Rzeszow,

Poland

e-mail: aszelc@wsiz.rzeszow.pl

Abstract:

We have proposed to use some features of swarm behaviours in modelling business

processes. Due to these features we deal with a propagation of business processes in all

accessible directions. This propagation is involved into our formalization instead of

communicating sequential processes. As a result, we have constructed a business process

diagram language based on the swarm behavior and an extension of that language in the

form of reflexive management language.

Keywords: swarm intelligence, emergency, unconventional computing

1. Introduction

For designing the information systems of organisations the process algebras have been usually used to

model networks of autonomous units communicating asynchronously via messages. These systems are

mailto:aschumann@wsiz.rzeszow.pl
mailto:kkpancerz@gmail.com
mailto:aszelc@wsiz.rzeszow.pl

42

constructed as the service-oriented architecture. There are three types of business architectures: (i)

static information systems where there are no structure changes during the system’s runtime; (ii)

dynamic information systems where there exist rules of system evolution; (iii) mobile information

systems, where some components can change their context in the system’s logical structure during its

execution.

The formal language that is used for describing patterns of interaction in concurrent systems is

represented by one of the forms of formalizations of communicating sequential processes. The first

language of communicating sequential processes was introduced by Charles Hoare in 1978. These

languages contain the items of two sorts: (i) communication events; (ii) processes which interact among

themselves through message-passing communication. In these languages business processes can be

coded algorithmically to simulate a real hierarchically composed business process ordered by some

business rules leading to a business aim.

So, standardly, business processes are simulated by means of communicating sequential

processes, i.e., in the form of sequences which can be defined algorithmically. There are many

notations for representing real business processes within process algebras in communicating sequential

forms: Business Process Modelling Notation, Business Process Execution Language for Web Services,

Business Process Definition Metamodel, Event Driven Process Chain, Petri Nets, etc. [1], [4], [5], [6],

[8], [10, [11], [13], [18]. These notations propose a business process diagram as an input transformation

which is controlled by an interface. It is very useful to have a representation of real processes as a

diagram where all entities are ordered algorithmically. However, in real organizations the requirements

to define all tasks for the office staff as process algebra algorithms can complicate a real business

process and overload the staff. Each staff member cannot be considered just automaton with some

inputs and outputs.

In this paper, we propose how we can avoid sequentiality in modelling business processes. The

matter is that communicating sequential processes reduce human resources to a kind of automata with

inputs and outputs. But people can be tired or frustrated and sometimes it is better to have possibilities

to define some tasks by the staff contextually. The contextuality of some tasks cannot be defined in the

form of communicating sequential processes, because due to the contextuality we deal with an infinite

set of atomic acts [14] and thus we cannot formalize business processes in the standard tools.

There is a kind of unconventional computing that is called swarm computing where we deal

with processes which cannot be represented in the form of sequences. The point is that in swarms

emergent effects appear usually, when the whole system cannot be considered an inductive

composition of its subsystems. Hence, we can regard business organizations as swarms also, where

there are some emergent effects, as well. In particular, due to these effects an organization can be more

adaptive, when some roles are spontaneously redistributed in new changing contexts.

One of the swarms we have studied logically [2] is represented by the large one-cell organism

of plasmodium of Physarum polycephalum. The plasmodium moves by protoplasmic streaming which

reverses every 30-60s. It can switch its direction or even multiplies according to different biosignals

attracting or repelling its behaviour. So, on the one hand, the plasmodium is a one-cell organism, but,

on the other hand, it behaves as a swarm with splitting and multiplications.

Plasmodium motions can be controled by several instructions like: add node, remove node, add

edge, remove edge [15], [16]. Adding and removing nodes can be implemented through activation and

deactivation of attractants, respectively. Adding and removing edges can be implemented by means of

repellents so that an activated repellent avoids a plasmodium transition between attractants. Hence, the

plasmodium can be considered a programmable biological device in the form of a timed transition

system, where attractants and repellents determine the set of all plasmodium transitions. As a result, in

the case of plasmodium of Physarum polycephalum, we deal with a kind of process algebra. Its main

43

feature is that the plasmodium demonstrates a massive-parallel expansion in all possible directions.

This feature is an emergent effect in plasmodium motions and cannot be represented in the linear form

as sequences.

In Physarum Chip Project: Growing Computers from Slime Mould (PhyChip) [3] funded by the

Seventh Framework Programme (FP7), we have constructed a biological computer on programmable

behavior of Physarum plasmodium. We have designed a software tool for simulating the plasmodium

motions. This tool, i.e., a programming language used for the plasmodium computer, can be used also

for simulating business processes. In this simulation we can examine business organizations as swarms

with a kind of emergency. In this paper we show how we can code communicating business processes

in our language.

2. Physarum Business Process Diagram Language

A business process is a set of activities performed in an organization to realize a business goal. A

business process language is designed to model the business processes. This language can be used to

support the design, administration, and configuration of business processes. Our language for

simulating the plasmodium behavior [12] can be reestablished as a business process diagram language.

Let us call it the Physarum business process diagram language that will be used as a graphical notation

for business process modeling, with an emphasis on swarm effects. In this language we well deal also

with AND-split, AND-join, OR-split, OR-join, etc., but with a possible emergency in configurations.

Using the Java environment, we have constructed the software tool working under the

client-server paradigm. Communication between clients and the server is realized through text

messages. An example of code responsible for the creation of new events associated with stimuli for

the plasmodium has the following form:

p1_a1=new Attractant(195,224,1);

p1_a2=new Attractant(541,310,1);

p1_a1=new Attractant(580,92,2);

p2_r1=new Repellent(452,130,2);

p2_r1=new Repellent(659,327,1);

The two first parameters of events constructors determine the location whereas the last

parameter is the client ID. The initial client window for fixing different events is shown in Figure 1.

Then in accordance with properties of events the server proposes the sequence flows with their possible

splitting or fusion, see Figure 2. The sequence flows correspond to veins of plasmodia between active

points (attractants).

44

Figure 1: The Physarum client window for fixing events

Figure 2: The Physarum client window with three sequence flows and one splitting

In this graphical notations, we use events and arcs among events. Formally, this means that we

have a transition system),,,,(= endin IITLETS , where:

 E is the non-empty set of events,

 L is the set of labels for transitions,

 ELET  is the transition relation,

 EI in  is the set of initial events.

 EIend  is the set of final events.

This transition system),,,,(= endin IITLETS is presented in our software tool as a labelled

graph with nodes corresponding to events from E , edges representing the transition relation T , and

labels of edges corresponding to members from L .

In the business process simulation, an event from E can be (i) a start event from inI (to start a

process), (ii) an end event from endI (to finish a process), (iii) an intermediate message or timer event

from)(\ endin IIE  . A label from L is a business task interpreted as an atomic activity that has to be

performed within a process. In the Physarum business process diagram language we can define several

task types like that: service, receive, send, user, script, manual, and reference. A transition from T is

understood as a gateway, i.e., a routing construct used to control the divergence and convergence of

sequence flow.

45

A topological structure of the plasmodium motions can be described as a triple),,(= RAPPM ,

where

 },,,{= 21 kpppP  is a set of original points of plasmodia of Physarum polycephalum,

 },,,{= 21 maaaA  is a set of attractants,

 },,,{= 21 nrrrR  is a set of repellents.

A behavior of plasmodia is described by the set },,,{= 21 rvvvV  of protoplasmic veins

formed among attractants as well as from original points of plasmodia to attractants.

The business processes of),,,,(= endin IITLETS can be reformulated in the form of

plasmodium transitions due to the following set of bijective functions:

 EAP : assigning an event to each original point of plasmodium as well as to each

attractant,

 TV : assigning a transition to each protoplasmic vein,

 inin IP: assigning an initial event to each original point of plasmodium.

 endend IS : assigning an end event to each final point of plasmodium from ES  .

In),,,,(= endin IITLETS , there are different compositions of transitions from T that are

called gateways:

 parallel fork gateways for creating concurrent sequence flows which have different end events;

 parallel join gateways AND for synchronizing all concurrent sequence flows: at the beginning

they have a splitting of one sequence flow A into several flows A1, …, An, then a fusion

AND(A1, …, An) = B;

 parallel join gateways OR for synchronizing some concurrent sequence flows: at the beginning

they have a splitting of one sequence flow A into several flows A1, …, An, then a fusion OR(A1,

…, An) = B;

 event-based decision gateways XOR: at the beginning we choose one alternative of a set of

mutually exclusive sequence flows A1, …, An, then we join alternative sequence flows into one

sequence flow XOR(A1, …, An) = B.

Hence, a workflow net is based on the following items:

 the initial events of inI ;

 the final events of endI ;

 the set of tasks)(\ endin IIETs  ;

 the flow relation)()()(TsTsITsTsIF endin  such that every node is on a directed

path from inIi to endIi ;

 the splitting AND, OR, or XOR;

 the joining AND, OR, or XOR;

 the removing defines the subnet of the whole workflow that is cleansed when the task is

executed;

 the definition of instances number of each task in accordance with functions MIN (the

minimum number of instances of task Tst), MAX (the maximum number of instances of

Tst), threshold (if the threshold is reached, then all active instances are cancelled and the task

is considered completed).

Thus, in this classical definition of workflow nets we assume that we always can build up a

workflow net, where every event and every transition is located on a path from the initial event to the

46

final event. So, the initial event inIi has no incoming edges and the final event endIi has no

outgoing edges. After the splitting AND, OR, or XOR we can construct an appropriate fusion AND,

OR, or XOR. Therefore we deal with a directed graph from inIi to endIi .

However, in case of swarms like the plasmodium of Physarum polycephalum we face the

situation that there are no directed graphs, because any swarm has a strategy to be expended in all

accessible directions and, thus, to prefer the splitting instead of the fusion. In other words, we ever face

more outputs endIi than inputs inIi .

Another problem is that any swarm has free will and under the same conditions swarms can

behave differently.

In our Physarum business process diagram language, we have implemented some features of

swarms including their expansion strategies. As a result, we avoid atomic actions because of

impossibility to construct a workflow net inductively on the basis of atomic tasks.

3. Reflexive Management Based on Swarm Behaviour

The reflexive management is used for controlling a knowledge structure of agents in a way such that all

performations satisfy the centre’s goals, i.e., they are maximally favourable for this centre.

The substantional kinds of reflexive management are as follows:

 institutional management (modification of admissible sets of actions of all groups of agents);

 motivational management (modification of goal functions of concrete agents);

 informational management (modification of information which agents use in decision making).

Informational management is devided into the following kinds:

 informational regulating (purposeful influence on information about states of affairs);

 expert management (purposeful influence on information about models of decision making);

 active prognosis (purposeful spread of information about future values of parameters depending

on states of affairs and actions of actors).

In our Physarum business process diagram language, we can formulate reflexive games and

reflexive management due to some swarm properties we have implemented in the business process

model.

Let us start with defining some classes of transitions that will be used for defining reflexive

games. For each event Ee in the transition system TS , we can determine its direct successors and

predecessors in the form:

),(=)(lePostePost
Ll




, where })',,(:'{=),(TeleEelePost  , is the set of all direct

successors of the event Ee ;

),(=)(lePreePre
Ll




, where }),,'(:'{=),(TeleEelePre  , the set of all direct predecessors

of the state Ee .

If there exists the event Ee in the transition system TS such that 1>))((sPostcard , where

card is the cardinality of the set, then TS is called a non-deterministic transition system. In

non-deterministic transition systems, we deal with ambiguity of direct successors of some states, i.e.,

we have a splitting of events/tasks without their next fusion in accordance with AND, OR, XOR.

In non-deterministic transition systems, we can appeal to to rough approximation of sets defined

in rough set theory (cf. [17]). Let),,,,(= endin IITLETS be a transition system and EX  . The

47

lower predecessor anticipation)(* XPre of X is given by

 }.)()(:{=)(* XePostandePostEeXPre  (1)

The lower predecessor anticipation consists of all events/tasks from which TS surely goes to the

events/tasks in X .

The upper predecessor anticipation)(* XPre of X is given by

 }.)(:{=)(*  XePostEeXPre (2)

The upper predecessor anticipation consists of all events/tasks from which TS possibly goes to the

events/tasks in X . So, TS can also go to the events/tasks from outside X .

In terms of the rough sets approach, called the Variable Precision Rough Set Model, we can

reformulate an inclusion relation. Let U be a given set of elements and UBA , . The standard set

inclusion is defined as

 .BuifonlyandifBA
Au




 (3)

Now, let U be a given set of elements, UBA , , and 0.5<0  . The majority set

inclusion is defined as

 ,
)(

)(
1 







Acard

BAcard
ifonlyandifBA (4)

where card denotes the cardinality of the set. BA


 means that a specified majority of elements

belonging to A belongs also to B . One can see that, if 0= , then the majority set inclusion

becomes a standard set inclusion.

By replacing the standard set inclusion with the majority set inclusion in the original definition

of the lower predecessor anticipation of a set of states in a transition system, we obtain the following

generalized notion of the  -lower predecessor anticipation. Let),,,,(= endin IITLETS be a transition

system and EX  . The  -lower predecessor anticipation)(* XPre of X is given by

 }.)()(:{=)(* XePostandePostEeXPre 



 (5)

The  -lower predecessor anticipation consists of each events/tasks from which TS goes, in most

cases (i.e., in terms of the majority set inclusion) to the events/tasks in X .

Let),,,,(= endin IITLETS be a transition system, EX  , and 0.5<0  . If)(* XPree ,

then e is said to be a strict anticipator of events/tasks from X . If)(* XPree  , then e is said to be

a quasi-anticipator of events/tasks from X . A set of all strict anticipators of X will be denoted by

)(XAnt whereas a set of all quasi-anticipators of X will be denoted by)(XAnt


. Notice that for any

48

X ,)()(XAntXAnt


 .

Now we can extend a transition system),,,,(= endin IITLETS of the Physarum business

process diagram language to a reflexive management language MovActAgtEE ,,),(,(= PG , Tab ,

))(
1,2

AgtAA ° , where

 E is a set of events/tasks of TS ;

)(EP is a set of payoffs in reflexive games;

 Agt is a set of reflexive players (agents);

 Act is a non-empty set of strategies represented by)(XAnt or)(XAnt


 for each payoff

EX  , an element of
AgtAct is called a move;

 }{\2)(:  ActAgtActEMov P is a mapping indicating the available sets of actions to a given

player in a given set of events/tasks;

)()(: EActETab Agt PP  is the transition table which associates, with a given set of

events/tasks of the game and a given move of the players, the set of events/tasks of the game

resulting from that move;

 for each AgtA , A° is a preorder (reflexive and transitive relation) over subsets of E ,

called the preference relation of player A .

Thus, player’s strategies)(XAnt or)(XAnt


 are not exclusive, i.e., they can be intersected.

The last one is the main feature of reflexive games and swarm behaviour. In these games we cannot

define exclusive strategies at all. In reflexive games we can be engaged in an unlimited hierarchy of

cognitive pictures: (i) each of the players can have their own picture about a state of affairs A , let us

denote these pictures by AK1 and AK 2 ; (ii) the first-order reflexion is expressed by means of

pictures of the second order which are designated by AKK 12 and AKK 21 , where AKK 12 are

pictures of agent 2 about pictures of agent 1, and AKK 21 are pictures of agent 1 about pictures of

agent 2, etc. In reflexive management we coose the level of reflexion n (0>n) to coordinate actions

of all players.

4. Conclusions

We have shown that communicating sequential processes formalized in standard business process

diagram languages have ho emergent properties of swarms and if we try to implement these properties

into business process diagram languages we face situations when splitting appears more often than

fusion (section 1). After this implementation we can construct a reflexive management language

(section 2) that contains some properties of swarms.

Acknowledgement

The research was financed by the National Science Centre in Poland, based on the decision

DEC-2012/07/B/HS1/00263, and by the Seventh Framework Programme, FP7-ICT-2011-8.

49

References:

1. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barros, A. P. Workflow

Patterns, Distributed and Parallel Databases, 14(3), July 2003, 5-51.

2. Adamatzky, A. Physarum Machines: Computers from Slime Mould. World Scientific, 2010.

3. Adamatzky, A., Erokhin, V., Grube, M., Schubert, Th., Schumann A. Physarum Chip Project:

Growing Computers From Slime Mould, International Journal of Unconventional Computing, 8(4),

2012, 319-323.

4. Ammarguellat, Z. A control-flow normalization algorithm and its complexity. IEEE Trans. Software

Eng., 18(3), 1992, 237-251.

5. Becker, J., Kugeler, M., and Rosemann, M. (eds.). Process Management. A Guide for the Design of

Business Processes. Springer-Verlag, 2003.

6. Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I. Process modeling in web applications, ACM

Trans. Softw. Eng. Methodol., 15(4), 2006, 360-409.

7. Desel, J., and Esparza, J. (eds.). Free Choice Petri Nets, volume 40 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

8. Gardner, T. UML Modelling of Automated Business Processes with a Mapping to BPEL4WS. In:

Proceedings of the First European Workshop on Object Orientation and Web Services. Springer, 2003.

9. Johnson, R., Pearson, D., and Pingali, K. The Program Structure Tree: Computing control regions in

linear time. [in:] Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), Orlando FL, USA, ACM Press, June 1994, 171-185.

10. Jordan, D., and Evdemon, J. Web Services Business Process Execution Language Version 2.0.

Committee Specification. OASIS WS-BPEL TC, January 2007. Available via

http://www.oasis-open.org/committees/download.php/22475/wsbpel-v2.0-CS01.pdf.

11. Kiepuszewski, B., Hofstede, A.H.M. ter, and Aalst, W.M.P. van der. Fundamentals of control flow

in workflows. Acta Informatica, 39(3), 2003, 143-209.

12. Pancerz, K., Schumann, A. Principles of an Object-Oriented Programming Language for Physarum

Polycephalum Computing. [in:] Proceedings of the 10th International Conference on Digital

Technologies (DT’2014), Zilina, Slovak Republic, July 9-11, 2014, 273-280.

13. Rosemann, M. Preparation of Process Modeling. In J. Becker, M. Kugeler, and M. Rosemann,

(eds.). Process Management. A Guide for the Design of Business Processes, pages 41–78.

Springer-Verlag, 2003.

14. Schumann, A. Towards context-based concurrent formal theories, Parallel Processing Letters, 25,

2015, 1540008.

15. Schumann, A., Pancerz, K. Towards an Object-Oriented Programming Language for Physarum

Polycephalum Computing. [in:] Szczuka, M., Czaja, L., Kacprzak, M. (eds.). Proceedings of the

Workshop on Concurrency, Specification and Programming (CS&P’2013), Warsaw, Poland,

September 25-27, 2013, 389-397.

16. Schumann, A., Pancerz, K. Timed Transition System Models for Programming Physarum

Machines: Extended Abstract. [in:] Popova-Zeugmann, L. (ed.). Proceedings of the Workshop on

Concurrency, Specification and Programming (CS&P’2014), Chemnitz, Germany, September 29 -

October 1, 2014.

17. Schumann, A., Pancerz, K. Roughness in Timed Transition Systems Modeling Propagation of

Plasmodium. [in:] Ciucci, D. et al. (eds.). Rough Sets and Knowledge Technology, Lecture Notes in

Computer Science, 9436, 2015.

18. Zhao, W., Hauser, R., Bhattacharya, K., Bryant, B.R., and Cao, F. Compiling business processes:

50

untangling unstructured loops in irreducible flow graphs, Int. Journal of Web and Grid Services, 2(1),

2006, 68-91.

