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Abstract

In their work McCulloch and Pitts describe an idefarepresenting all of
nervous activity in terms of propositional logichi§ idea was quickly
challenged. One of reasons for this challenge vghsgr believe that logic is
unable to describe most of human cognitive prosedsethis paper we will
analyse premises of original McCulloch and Pittspasition. Following that,
we will ask about ability of symbolic (logical) gges to represent human
cognition. We will finish by analysing relation keten symbolic and
subsymbolic computing, in hope of bridging the gapveen the two.
Keywords nonmonotonic logic; neural networks; human reasgpn

1. Introduction

The gap between symbolic and subsymbolic (neurtafor&) modes of computation is a riddle for
the philosophy of mind. Complex symbolic systenke lihose of grammar and logic are essential
when we try to understand the general featurestlageculiarities of natural language, reasoning
and other cognitive domains. On the other handt wiomiodern theories assume stance seeing that
cognition resides in the brain and that neuronalig forms its basis. Yet neuronal computation
appears to be numerical, not symbolic; parallet, sevial; distributed over a gigantic number of
different elements, not as highly localized as ymkolic systems. Moreover, the brain is an
adaptive system that is very sensitive to the sttedil character of experience. “Hard-edged” rule
systems (classical logic) are not suitable to ae#i this aspect of behavior. We will start with
analyzing the roots of neural network approachn $eee as paradigmatic example of subsymbolic
computation approach. It is widely accepted that thethod started with the work by Warren S.
McCulloch and Walter H. Pitts titledl Logical Calculus of the Ideas Immanent in NervAaBvity
[16]. We will try to show connections between thigroach and logical description of reasoning
processes.

In the early days of cognitive science, logic waken to play both a descriptive and a
normative role in theories of intelligent behavi@rescriptively, human beings were taken to be
fundamentally logical, or rational. Normativelygio was taken to define rational behavior and thus
to provide a starting point for the artificial regiuction of intelligence. Both positions were soon
challenged. As it turns out however, logic contsue be at the forefront of conceptual tools in
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cognitive science. What is embodied by competitoveonnectionist (neural network) Al approach.
Rather than defeating the relevance of logic, thellenges posed by cognitive science have
inspired logicians to enrich the repertoire of t@itools for analyzing reasoning processes and
computation. We will examine the role of nonmonatdogics in this endeavor. This kind of logic
allows to overcome logics problem to deal with tsediged” rules, that neural networks excel at.

2. Logic and Neuroscience

Logic is a brand of science that deals with stugyhthecorrect reasoningReasoning is a mental
activity and as such is seen as at least closédyerkto the way the mind works. Classically, in
logic the correct reasoning was synonymous withudide reasoning and ordinary deductive
reasoning takes place in natural language. Thathig to answer the question about the role of
logic in science about cognition, we have to fask about the relation between natural and formal
language. As stated above, logic had two dimensioniss research, descriptive and normative
theories of intelligent behavior. Those two dimensi find their explication in two kinds of
answers to the question about natural-formal laggualation. First view states that, at least some
sentences of natural language have underlying dbdarm and these form are represented by
formulas of formal language — this view is complatilwith the descriptive dimension of logic.
Since reasoning is an activity performed in langyaggic provides deep structure of correct
reasoning. This view is represented by philosopbach as Davidson [3]. The second view is that
natural languages are ambiguous and vague andchssbould be replaced by formal language
lacking these features — this view is compatibléhwiormative dimension of logic. According to a
view like this, logically correct reasoning repreteideal sought after activity in natural language
In philosophy this approach can be found in worlk&/dv.O. Quine [19]. With the rise of cognitive
science both of those roles were put into questiostead of eliminating logic out of cognitive
science it motivated logicians to expand tooldheirtrepertoire.

Parallel to modern logic, a different type of scierhas begun its emergence since laté 19
century. One that examined physical basis, rathen aibstract rules governing the work of human
mind. It was called neuroscience and it seemed rathing connected the two activities. It began
to change with the publication éf Logical Calculus of the Ideas Immanent in NervAusvity at
the end of first half of 20 century. This paper is often cited as the starfinmt of research in
artificial neural networks; for us it is the firshoment in which research fields of logic and
neuroscience meet. McCulloch and Pitts state iir theper that activity of any neuron may be
represented as a proposition. We can assert tlaéibres existing among nervous activities can be
represented as relations between propositions. Tigice two difficulties immanent in this
approach, both problems rising from the physiolagiaspects of nervous activity. The first
concerns the effects of previous excitations omrtutactivations of nervous cells. The second
notices that learning has to be a permanent chemgeural structure. Nonetheless, they see this
only as problematic in the case of asserting faaqaivalency (or identity) between calculus of
logical propositions and neural structures. Thatesnent is of much weaker kind; physiological
aspects of neural systems do not affect the faadt tblations of propositions corresponding to
certain nervous activities are that of propositidogic.

Because of that they make certain assumptions dheintcalculus. These assumptions are
aimed at simplifying of the behavior of real newson
(1) Activity of neurons is binary, they are eitloer or off.

(2) The threshold of neuron activation is indepena previous activations of a neuron.
(3) The only delay significant for nervous activisythe synaptic one.

(4) Inhibitory synapses absolutely prevent actovabf neuron at certain moment.

(5) The structure of neural net does not changene.

All of the above assumptions seam necessary tesept the neural activity in logical
calculus. Additionally they arise as a result ok tdifference between formal and factual
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equivalency, authors distinguished. The actual aleagtivity would not comply to such rules, but
the idea is — as stated before — that they talkitaibhe abstract calculus of “mind”.

The authors divide neurons into two categories. aé they nam@eripheral afferents
input neurons that do not receive signals from atingr neuron in the net. Second consisting of all
other neurons. Next step they take, consists oéldping a logical apparatus necessary to define
basic concepts of their calculus. As noted by Stap@. Kleene [12] the approach and notation
used by McCulloch and Pitts are obscure and hardntierstand, that is why we will try to
streamline it and present in a more approachablenaralet us consider two problems presented
by the authors: “(...) first, to find an effective thed of obtaining a set of computab&
constituting a solution of a given net [16, p. 103]

In other words, an answer to the question: whas @ogiven net compute (How to calculate
behavior of the net)? This is called tautionof a net. We can define the solution of a net ssta
of logical sentences of the form: neurois firing if and only if a given logical combinan of the
firing predicates of input neurons at previous Bmamd some constant sentences including firing
predicates of these same neurornts=@tis true. These sentences are the solution fot d they are
all true for it.

The second problem is characterized as follows:)“{o. characterize a class of realizaBle
in effective fashion (ibid. 103).” The question @@&an be summarized as: can a certain net compute
a given logical sentence (How to find a net thdtawes in a specific way)? A sentenceealizable
for a net if it is true for that net, or in otheokds when a net can compute it.

Following Stenning and van Lambalgen [21, pp. 218}2ve can define net, in modern
fashion, as follow:

Definition 1 Net is a graph on a set of computational units,nemted with weighted links that can
be either excitatory of inhibitory.

Accordingly units can be defined:

Definition 2 Computational unit (unit) is a function with thdléaving behavior:

 Inputs are delivered through weighted linkss{0, 1].

 Links can be either excitatoryi(x x, € & or inhibitory (\,..., i € R.

 If an inhibitory link is active (y£ 0), connected unit is shut off, and outputs O.

« Otherwise, quantity’:=" x;w; is calculated; if it equals or exceeds thresha®) (nit is active
and outputs 1; otherwise, unit rests and outputs O.

We can represent logical connectors in terms dfswamd connections. Conjunction can be
represented by unit witch two excitatory inputs #m@shold of 2; alternative can be represented by
unit witch two excitatory inputs and threshold gfnkgation can be represented by unit witch one
excitatory input and one inhibitory.

Authors propose a class of expressions represersiigtion of net, calledemporal
propositional expressiond PE). TPEs have a single free variable, identifisdliscreet time.
Definition 3 TEPs are defined by the following recursion:

» Predicate of one argument is a TPE.

» Logical disjunction, conjunction and negated comjiion (and not) of TPEs with the same free
variable are by themselves TPE.

* Nothing else is a TPE.

Theorems 2 and 3 of the discussed work give ussaoreof a rule of substitution for neural
nets and a set of basic expressions from whichetlegpressions can be constructed. Rule of
substitution can be summarized as followeplacing peripheral afferent in a realizable net &
realizable net is in itself a realizable n&y that definition all TPE are realizable. Sethafsic
realizable expressions follows then from definitioh TPE and consist of nets representing
operations of precession, disjunction, conjunctiod negated conjunction. Respectively each net is
represented below by figures la-d. Lines witchvasr@at ends represent excitatory connections,
lines witch circles at the ends represent inhilgitlnnections.
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Figure 1. a) precession; b) disjunction; b) conjiom; c) negated conjunction. Version of nets
presented in McCulloch and Pitts [16] adapted &sented definitions.

It can be described by following expressions:
a) No(t) = No(t-1)

b) Na(t) = Na(t-1) v Np(t-1)

C) Na(t) = Nu(t-1) A No(t-1)

d) Na(t) = Na(t-1) A ~N(t-2)

The rule of substitution, following from mentiondteorems gives us a simple procedure of
constructing neural nets. The authors proposeigider an example of heat sensation evoked by a
short time cooling [16, pp. 106-107]. If a cold etff makes contact with the skin and is
instantaneously removed, the sensation of heatoedur; if the same object will not be removed,
the sensation of cold occurs without the prelimyntagat sensation. This happens for cold receptors
but not for heat receptors. We assume there aferetit receptors responsible for heat and cold
detection, but the same neuron is responsibledat kensation in both cases. Because of that, the
synaptic delay for the sensation of cold must leaigr by one then for the sensation of heat. We
can reproduce this effect using the described ndettyp transforming the above mentioned
expressions using the rule of substitution. Weivece
€) Na(t) = Na(t-1) v [Na(t-3) A ~Na(t-2)]

Na(t) = Na(t-2) A Na(t-1)

We can notice this net has 2 solutions, one fot &ed one for cold respectively. Figure in
which both of those expressions are realizablebeaconstructed from figures 1a-d in the following
manner.

Beginning in the standard logical manner, we fashsider the function enclosed in most
brackets. We receive a net of form la represemtkpgession:

Na(t) = Na(t-1) 1)

Proceeding outwards, we introduce two nets, baHisg from nodedN, andN,. One of form 1c
ending inN4. We receive:

Na(t) = Na(t-1) A No(t-1) 2

We must advance time variable for previous expoessihere we substitute it in this formula.
Which is equivalent to:
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Na(t) = Na(t-2) A Ny(t-1) (3)
Second of form 1d ending M. Giving us:

No(t) = Na(t-1) A ~No(t-1) (4)
SubstitutingN, for its equivalent in proper time interval we reee

No(t) = No(t-2) A ~No(t-1) (5)
Finally we run net of form 1b starting My andNy_to neuroriNs. So that:

N3(t) = Na(t-1) v Ny(t-1) (6)
Again, due to substitutinly, for equivalent formula, (6) can be expressed as:

Ns(t) = Na(t-1) v [Na(t-3) A ~N(t-2)] (7)

The whole net can be represented by figure 2.

e)

N, Ns

e-1
N, /

TN

6=2

Figure 2. Net realizing expressions e). Modifiednir McCulloch and Pitts [16], to adapt to
presented definitions.

That way we can create nets realizing underlyingicel functions. We can clearly see that
McCulloch saw propositional logic as an underlystigicture of human mind. He writes:

To psychology, however defined, specification af weuld contribute all that could be
achieved in that field — even if analysis were masho ultimate psychic unit or
“psychon”, for psychon can be no less than theviagtof a single neuron. Since that
activity is inherently propositional, all psychigents have an intentional, or “semantic”
character. The “all-or-none” law of these actistiand the conformity of their relations
to those of the logic of propositions, insure tr@ations of psychons are those of two-
valued logic of propositions [16, pp. 113-114].

This sentence presents author’s intentions of pgplagical character of human mind activity. The
nervous system is described as based on mechapieglkent to propositional logic. Unfortunately,

it highlights weak points of both logical approa@hd neural nets of McCulloch-Pitts type. This
effort to “marry” logic and neuroscience marks finst and last attempt to do so by way of classical
propositional logic. It may be because it highlaghtcertain weaknesses of logical approach —
weaknesses we will analyze in the following parpgra
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3. Logic and Human Cognition

The above described neural networks meet with pleftcritique. Some of it is coming from
biological background. For example, it was quickigticed that the assumption about neurons
always being in one of two possible states is lgicklly inadequate. In the context of discussion
presented in this paper, what is more importanhésfact that some developments in research of
human cognition put descriptive dimension of lognder doubt. It remained a possibility that logic
described a normative system of what certain tgbesasoning should be, but it no longer could be
perceived as a representation of natural cognitieeesses.

If we accept descriptive dimension of logic, theérsame level human reasoning should be
based upon a set of simple logical procedures. Mewéiumans tend to do surprisingly poorly
when faced with tasks of performing simple logipedcedures. This phenomenon was noticed and
described by Wason in, named after hivason Selection Ta$R3], [24]. The task puts a subject
in choice situation guided by a simple rule. Theicé is made between cards. Each card has on it
either a number or a letter. Cards, on a side leigi subject, read D, K, 7 and 3. The subject is
then familiarized with singular rule of the taskEvery card which has D on one side must have a 3
on other”. After that the question is posed; “Whitchny, of the cards must be turned over to judge
if the rule is true”. From the classical logic ddanint the “if” in the rule should be read as miaer
conditional, making the rule B> 3. Hence, using modus ponens (MP), we may dedatelX has
to be turned to check if there is 3 on back sidkeWwise, using modus Tollens (MT), we deduce 7
has to be turned over to ascertain if there is mnRhe reverse. Making, assumed, correct answer
D and 7. The most popular answer given is howdveand 3. In fact D is almost always given as
one of the answers. Conversely, 7 is rarely seeneagssary to turn over. Some researchers,
including Wason, see that as an evidence that hsirmanpoor at even simple tasks. If we would
accept Wason's interpretation of “B 3” rule, we have to accept that people are badiag MT,
so tasks requiring it as reasoning schemata letadl&cious reasoning.

Interesting development appeared out of certailreesing of Wason task [8], [11]. The
original selection task took place in abstract dionoé letters and numbers. Rephrasing the problem
in a domain familiar to subjects changed outconastirally. In the mentioned rephrasing, numbers
and letters were replaced by ages and kinds okslrWhen the task is to confirm a rule “if person
drinking beer, then that person is 19 or olderhjsats performed nearly perfectly. Noticing the
fact that rephrasing Wason'’s task in a familiar dombrings error rate down contradicts formal-
logical model of reasoning.

The fact that context has an effect on the abdftgubjects to deduce a correct answer may
be explained by the theory of two competing systemgeasoning. It can be reasonably doubted
that experiments lik&Vason selection tadlest what authors actually believed they did. Qaes
can be posed: what does actually count as reasoningatural environment? Proposing dual
process theory of reasoning can explain the desgtisiiuation. Here we assume reasoning consists
of two systems supplementing each other. Descrifystem Evans writes:

System 1 is (...) not a single system but a set bbystems that operate with some
autonomy. System 1 includes instinctive behavidrat twould include any input
modules of the kind proposed by Fodor.(...) The Sgsteprocesses that are most often
described, however, are those that are formed bypcadive learning of the kind
produced by neural networks.(...) System 1 proceasesapid, parallel, and automatic
in nature; only their final product is posted imsoiousness [5, p. 454].

By contrast,system 2is slow, sequential and symbolic in nature. Logieasoning belongs in
system 2, because of that tasks performed by syst@onot conform to rules of logic. This is also
a reason why neural networks cannot be logical mash- system 1 is equivalent to a subsymbolic
computing system.
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We then have two approaches to reasoning. Letluthedirst algorithmic: it states MP-MT
asymmetry in Wason selection task is an effect af iving harder to implement on algorithmic
level. A sample of this approach can be found ikstad and Chatemlhe Probabilistic Mind:
Prospects for Bayesian Cognitive Sciefité]. That is why reasoners trying to reason dédeky
have problems with finding the correct solutioneT¢econd, called non-logical reasoning, argues
that subjects do not attempt to deductively fintlsons to posed questions. That way MP-MT
asymmetry is not a matter of competency gap bberdinadequacy” of utilized competences.

Authors Stenning and van Lambalgen [21] proposéfareint analysis of context effect on
task results. They attack Wason’s assumption ifiain“the rule has to be interpreted as a material
conditional, which puts doubt on the assertion thate is only one correct answer. They propose
to distinguish between the two forms of conditi@nabne descriptive; other deontic. That may
explain why two statements (Wason task and Wasek taphrased in familiar context), of
supposedly the same logical form can lead to rdgidifferent outcomes. The task when rule is
seen descriptively, is viewed by subject, as caningrdetermining if the rule is true or false fbet
given cards. With deontic interpretation of corahl truth of the rule is not an issue, only whethe
the rule is being followed or not. They notice ttta original task may be interpreted as containing
descriptive rule, increasing the cognitive burdarsabjects. However, in the context of this paper,
the more important aspect is the observation ofptioeessing side nonmonotonic logic provides
adequate model for analysis of subjects’ reasonirgsenting human reasoning in terms of
nonmonotonic logic explains why reasoning in aeystvhich could not be explained in terms of
logic. More precisely it is cold but not in classidogic. This system can still be represented by a
set of reasoning rules, just not build upon dedecitnferences. In this view, deontic interpretation
of the rule can be associated with classical ldgocaditional, when descriptive interpretation
entails a different kind of conditional, nonmondtgrthat should be read “typically this X entails
Y.

To answer what differentiates classical logic frtvte nonmonotonic one, let’'s consider the
following property of deductive logic, one that tsifor relation of classical consequengg “
Monotony: if AE BthenAuU CE B.

Monotony states that B is a logical consequence Af then it is also a consequence of any
set containing A as its subset. In other wordsjragld new premise to inference cannot pre-empt
earlier conclusions. Monotony follows straight framature of logical consequence relatiédeB
holds when B is true on every interpretation onhvatery sentence in A are true. Clearly, every
day inferences do not conform to this requiremAnotually, not abiding to it is a defining property
of so called defeasible reasoning, the kind of nemmtonic inference that supposedly describes
how every day reasoning works. Literature is riclamalyses of reasons why deductive reasoning is
inadequate in describing the so called everydagramices [4], [18].

There are many examples of nonmonotonic logicsfdrutur purpose semantic approach of
Shoham [20] will be used. This theory is often refd to agpreferential logi¢ it is a simple and
elegant approach. Additionally it can be used tpl&r the MP-MT asymmetry and perceived
system 1 - system 2 dichotomy.

Definition 4 L, is a nonmonotonic preferential logic generatednfrd. and 2 when
following demands are met:

* In a standard logic L that satisfy following demarar all A, B and C in L, if AB, then also
ANC E B.

» A strict partial orderz on the model of L is defined:1¥M,, meaning that Mis preferred over
M.

» Preferred model is one that: Model M preferentiadtisfies A (M. A); MEA and there is no
other model M’ such that ¥M’. We call M preferred model of A.

We can define a preferential consequence relatiotht logic in the following fashion:
Definition 5 Preferential consequence: A is a preferential cogusace of B (A>.B) for any M, if
MEe_ A, then M:B.
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In other wordsA—_.B if all preferred models oA are models oB. This relation is
nonmonotonic because it is possible tAaand C have preferred models that are not preferred
models ofA alone. So with addition of it may be that thaB no longer holds in all preferred
models ofA&C.

Now we can notice that preferential consequencatioel easily explains MP-MT
asymmetry. It refers to preferred modelsAfbut also to all models dB. Because of it, this
consequence relation does not contrapose. Foelhgon to be contrapositive it would be required
that all preferred models of nBthbe models of no. It is quite possible there exist not-preferred
models ofA wich are also preferred models of ®tThus, the definition is not satisfied for not-
B—_,not-A, and MP-MT asymmetry is explained.

4. Symbolic vs. Subsymbolic Paradigms

Classical view of human cognition is one analogmusymbolic computation in digital computers

[23]. On this account information is representec adring of symbols in memory of a computing

unit or on a piece of paper. On the other hand ectionist claim that information storage have a
non-symbolic character, information is stored inghies of connections between units of neural net.
Connectionists perceive mental processes as dyramdidlistributes evolution of activity in neural

net. Each unit of this net activates dependingtngth of connections and activity of neighboring
units.

In late 20" century a heated debate ensued between propowéntsmbolic and
connectionist (subsymbolic) approach to cognitiveersce. One of most vocal opponents of
connectionism were J. Fodor and Z. Pylyshyn [6yrargued that no connectionist model of mind
can have compositional semantics. That is the lbasause, as they argued, mental representations
require systematicity and no neural network canikeithis feature; therefore modeling of
cognition have to be symbolic not connectionistst&maticity is understood as a feature of
representation that makes meaning of representati@orrespond systematically to its structure.
That means if we are able to represent express$tetet killed Paul”, we must be able to represent
expression “Paul killed Peter”. Putting details tbfs debate aside, prevailing view was that
symbolic and subsymbolic approach are differentinndmpatible.

Concurrently, radical connectionists claimed inagexy of symbolic processing as a model
of mind. We discussed this in part 3 of this papks. reiterate, they claimed that symbolic
computing poorly explains holistic representatidndata, spontaneous generalization, effect of
context, and many other aspects of human cognitapiured by their models. This failure to match
the flexibility and efficiency of human cognitios in their eyes a symptom of the need for a new
paradigm in cognitive science. This approach camrdiedradical connectionismand it agenda
can be described as eliminating symbolic procesasngadequate in cognitive science.

However, many connectionists do not view their gdaya as opposition to symbolic
computation. So called implementation connectisn@esent an image in with mind is a neural
net, but also a symbolic process on higher levedhstraction. In that view role of connectionist
researcher is to find how a machine required tdop@r symbolic processes can be forged from
neural network resources. Even more interestinglges1990’s, models combining subsymbolic
and symbolic paradigms appeared [1], [7], [25]. &tfnately hybrid approach to problem fails
address question about underlying difference betwa&anbolic and distributed representation.
Because of that it is proposed to inquire aboutsipbs equivalency between symbolic and
subsymbolic models of computation.

The idea is that connection can come again fromsttle of logic, similarly to original
McCulloch and Pitts proposition. Instead of clagkiogic we would turn to nonmonotonic one.
This way we avoid problems with inadequacy of lagjidescription to data collected during
research on human cognition. The close relatiowést symbolic computation and logic is well
known [10]. With neural nets it have to be showmttlevery logical model of a system is
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isomorphic to a member of distributed, or subsynthadubset. In fact, it is trivial to show that
some nonmonotonic reasoning may be representecimainnetworks. An example of neural net
generatinc a nonmonotonic inference was shown dg as 1991 [2]. They propose to consider
network consisting of four neurong x., x4. They identify sets of active neurons witthesmata.
There are three schematgB, y. Corresponding to following sets of active neurons= x, Xo; B =

X2, X3; ¥ = X4. There are two excitatory connections, one betweand % other betweenyand x.
Third connection between, &and %is inhibitory connection. Assuming that inhibitacgnnection is
stronger than excitatory one betweemmnd % Following situation is possible: givingas input, the
network will activate (o k B); extending inputs ta andy, effects in withdrawal of (o A v & B).
That situation directly defy monotonicity, sincecluding new premises (inputs) reduce set of
conclusions.

However, this is just one specific case when neneélvork exhibits behavior equivalent to
some nonmonotonic theory. Can we have an equivaldreorem? Theorem of that kind would
show that for every nonmonotonic theory there exiseural network able to compute that theory.
Fortunately theorems of that kind has been propdsedogicians over the last few decades.
Holldobren and Kalinke [9] gives a theorem of thiead. They show that for every logical program
there exists a three layer feed forward networkctvliomputes it. Other example is presented by
Leitgeb [13], [14], [15]. His proposition is espalty interesting in context of this debate. He
propose a way to represent propositional lettera ast of nodes in neural networks. At the same
time Leitgeb shows that any dynamic system perfognicalculations over distributed
representation can be interpreted as symbolic mygierforming nonmonotonic inferences. What
can be interpreted as functional equivalence ofaeiag representation between symbolic and
subsymbolic processes.

5. Conclusions

The methodological position pursued in this artigks one which looks for unification. In the case
under discussions the point was to assume thatagnamd symbol processing are a macro-level
description of what is considered a connectionystesn at the micro level. Hence, the idea is that
the symbolic and the subsymbolic mode of computatemn be integrated within a unified theory of
cognition. We demonstrated that logical approachtwa applied to model and describe processes
of human reasoning, previously regarded as evadiymgbolic representation. Which leads to
believe that, at least functionally, neural netwackivity is equivalent to nonmonotonic inferences.
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