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Abstract: 
In their work McCulloch and Pitts describe an idea of representing all of 
nervous activity in terms of propositional logic. This idea was quickly 
challenged. One of reasons for this challenge was rising believe that logic is 
unable to describe most of human cognitive processes. In this paper we will 
analyse premises of original McCulloch and Pitts proposition. Following that, 
we will ask about ability of symbolic (logical) systems to represent human 
cognition. We will finish by analysing relation between symbolic and 
subsymbolic computing, in hope of bridging the gap between the two. 
Keywords: nonmonotonic logic; neural networks; human reasoning. 

 
 
 

1. Introduction 
 
The gap between symbolic and subsymbolic (neural network) modes of computation is a riddle for 
the philosophy of mind. Complex symbolic systems like those of grammar and logic are essential 
when we try to understand the general features and the peculiarities of natural language, reasoning 
and other cognitive domains. On the other hand, most of modern theories assume stance seeing that 
cognition resides in the brain and that neuronal activity forms its basis. Yet neuronal computation 
appears to be numerical, not symbolic; parallel, not serial; distributed over a gigantic number of 
different elements, not as highly localized as in symbolic systems. Moreover, the brain is an 
adaptive system that is very sensitive to the statistical character of experience. “Hard-edged” rule 
systems (classical logic) are not suitable to deal with this aspect of behavior. We will start with 
analyzing the roots of neural network approach, seen here as paradigmatic example of subsymbolic 
computation approach. It is widely accepted that this method started with the work by Warren S. 
McCulloch and Walter H. Pitts titled A Logical Calculus of the Ideas Immanent in Nervous Activity 
[16]. We will try to show connections between this approach and logical description of reasoning 
processes. 

In the early days of cognitive science, logic was taken to play both a descriptive and a 
normative role in theories of intelligent behavior. Descriptively, human beings were taken to be 
fundamentally logical, or rational. Normatively, logic was taken to define rational behavior and thus 
to provide a starting point for the artificial reproduction of intelligence. Both positions were soon 
challenged. As it turns out however, logic continues to be at the forefront of conceptual tools in 
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cognitive science. What is embodied by competitive to connectionist (neural network) AI approach. 
Rather than defeating the relevance of logic, the challenges posed by cognitive science have 
inspired logicians to enrich the repertoire of logical tools for analyzing reasoning processes and 
computation. We will examine the role of nonmonotonic logics in this endeavor. This kind of logic 
allows to overcome logics problem to deal with “soft-edged” rules, that neural networks excel at. 

 
2. Logic and Neuroscience 
 
Logic is a brand of science that deals with studying of the correct reasoning. Reasoning is a mental 
activity and as such is seen as at least closely related to the way the mind works. Classically, in 
logic the correct reasoning was synonymous with deductive reasoning and ordinary deductive 
reasoning takes place in natural language. That is why, to answer the question about the role of 
logic in science about cognition, we have to first ask about the relation between natural and formal 
language. As stated above, logic had two dimensions to its research, descriptive and normative 
theories of intelligent behavior. Those two dimensions find their explication in two kinds of 
answers to the question about natural-formal language relation. First view states that, at least some 
sentences of natural language have underlying logical form and these form are represented by 
formulas of formal language – this view is compatible with the descriptive dimension of logic. 
Since reasoning is an activity performed in language, logic provides deep structure of correct 
reasoning. This view is represented by philosophers such as Davidson [3]. The second view is that 
natural languages are ambiguous and vague and as such should be replaced by formal language 
lacking these features – this view is compatible with normative dimension of logic. According to a 
view like this, logically correct reasoning represents ideal sought after activity in natural language. 
In philosophy this approach can be found in works of W.V.O. Quine [19]. With the rise of cognitive 
science both of those roles were put into question. Instead of eliminating logic out of cognitive 
science it motivated logicians to expand tools in their repertoire.  

Parallel to modern logic, a different type of science has begun its emergence since late 19th 
century. One that examined physical basis, rather than abstract rules governing the work of human 
mind. It was called neuroscience and it seemed as if nothing connected the two activities. It began 
to change with the publication of A Logical Calculus of the Ideas Immanent in Nervous Activity at 
the end of first half of 20th century. This paper is often cited as the starting point of research in 
artificial neural networks; for us it is the first moment in which research fields of logic and 
neuroscience meet. McCulloch and Pitts state in their paper that activity of any neuron may be 
represented as a proposition. We can assert that relations existing among nervous activities can be 
represented as relations between propositions. They notice two difficulties immanent in this 
approach, both problems rising from the physiological aspects of nervous activity. The first 
concerns the effects of previous excitations on future activations of nervous cells. The second 
notices that learning has to be a permanent change in neural structure. Nonetheless, they see this 
only as problematic in the case of asserting factual equivalency (or identity) between calculus of 
logical propositions and neural structures. Their statement is of much weaker kind; physiological 
aspects of neural systems do not affect the fact that relations of propositions corresponding to 
certain nervous activities are that of propositional logic. 

Because of that they make certain assumptions about their calculus. These assumptions are 
aimed at simplifying of the behavior of real neurons.  
(1) Activity of neurons is binary, they are either on or off. 
(2) The threshold of neuron activation is independent of previous activations of a neuron. 
(3) The only delay significant for nervous activity is the synaptic one. 
(4) Inhibitory synapses absolutely prevent activation of neuron at certain moment. 
(5) The structure of neural net does not change in time. 

All of the above assumptions seam necessary to represent the neural activity in logical 
calculus. Additionally they arise as a result of the difference between formal and factual 
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equivalency, authors distinguished. The actual neural activity would not comply to such rules, but 
the idea is – as stated before – that they talk about the abstract calculus of “mind”.  

The authors divide neurons into two categories. One that they name peripheral afferents - 
input neurons that do not receive signals from any other neuron in the net. Second consisting of all 
other neurons. Next step they take, consists of developing a logical apparatus necessary to define 
basic concepts of their calculus. As noted by Stephen C. Kleene [12] the approach and notation 
used by McCulloch and Pitts are obscure and hard to understand, that is why we will try to 
streamline it and present in a more approachable manner. Let us consider two problems presented 
by the authors: “(…) first, to find an effective method of obtaining a set of computable S 
constituting a solution of a given net [16, p. 103].” 

In other words, an answer to the question: what does a given net compute (How to calculate 
behavior of the net)? This is called the solution of a net. We can define the solution of a net as a set 
of logical sentences of the form: neuron i is firing if and only if a given logical combination of the 
firing predicates of input neurons at previous times and some constant sentences including firing 
predicates of these same neurons at t=0 is true. These sentences are the solution for a net if they are 
all true for it.  

The second problem is characterized as follows: “(…) to characterize a class of realizable S 
in effective fashion (ibid. 103).” The question here can be summarized as: can a certain net compute 
a given logical sentence (How to find a net that behaves in a specific way)? A sentence is realizable 
for a net if it is true for that net, or in other words when a net can compute it.  

Following Stenning and van Lambalgen [21, pp. 218-219] we can define net, in modern 
fashion, as follow: 
Definition 1 Net is a graph on a set of computational units, connected with weighted links that can 
be either excitatory of inhibitory. 
Accordingly units can be defined: 
Definition 2 Computational unit (unit) is a function with the following behavior: 
• Inputs are delivered through weighted links wj ∊ [0, 1]. 
• Links can be either excitatory (x1,…, xn ∊ ℝ) or inhibitory (y1,…, yn ∊ ℝ). 
• If an inhibitory link is active (yi ≠ 0), connected unit is shut off, and outputs 0. 
• Otherwise, quantity ∑ ����

��	
��
  is calculated; if it equals or exceeds threshold (Ѳ) unit is active 

and outputs 1; otherwise, unit rests and outputs 0. 
We can represent logical connectors in terms of units and connections. Conjunction can be 

represented by unit witch two excitatory inputs and threshold of 2; alternative can be represented by 
unit witch two excitatory inputs and threshold of 1; negation can be represented by unit witch one 
excitatory input and one inhibitory. 

Authors propose a class of expressions representing solution of net, called temporal 
propositional expressions (TPE). TPEs have a single free variable, identified as discreet time.  
Definition 3 TEPs are defined by the following recursion:  
• Predicate of one argument is a TPE.  
• Logical disjunction, conjunction and negated conjunction (and not) of TPEs with the same free 
variable are by themselves TPE. 
• Nothing else is a TPE.  

Theorems 2 and 3 of the discussed work give us a version of a rule of substitution for neural 
nets and a set of basic expressions from which those expressions can be constructed. Rule of 
substitution can be summarized as follows: replacing peripheral afferent in a realizable net by a 
realizable net is in itself a realizable net. By that definition all TPE are realizable. Set of basic 
realizable expressions follows then from definition of TPE and consist of nets representing 
operations of precession, disjunction, conjunction and negated conjunction. Respectively each net is 
represented below by figures 1a-d. Lines witch arrows at ends represent excitatory connections, 
lines witch circles at the ends represent inhibitory connections. 
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Figure 1. a) precession; b) disjunction; b) conjunction; c) negated conjunction. Version of nets 
presented in McCulloch and Pitts [16] adapted to presented definitions. 
 
It can be described by following expressions: 
a) N2(t) ≡ N1(t-1) 
b) N3(t) ≡ N1(t-1) ∨ N2(t-1) 
c) N3(t) ≡ N1(t-1) ∧ N2(t-1) 
d) N3(t) ≡ N1(t-1) ∧ ~N2(t-2) 

The rule of substitution, following from mentioned theorems gives us a simple procedure of 
constructing neural nets. The authors propose to consider an example of heat sensation evoked by a 
short time cooling [16, pp. 106-107]. If a cold object makes contact with the skin and is 
instantaneously removed, the sensation of heat will occur; if the same object will not be removed, 
the sensation of cold occurs without the preliminary heat sensation. This happens for cold receptors 
but not for heat receptors. We assume there are different receptors responsible for heat and cold 
detection, but the same neuron is responsible for heat sensation in both cases. Because of that, the 
synaptic delay for the sensation of cold must be greater by one then for the sensation of heat. We 
can reproduce this effect using the described method by transforming the above mentioned 
expressions using the rule of substitution. We receive: 
e) N3(t) ≡ N1(t-1) ∨ [N2(t-3) ∧ ~N2(t-2)] 
N4(t) ≡ N2(t-2) ∧ N2(t-1) 

We can notice this net has 2 solutions, one for heat and one for cold respectively. Figure in 
which both of those expressions are realizable can be constructed from figures 1a-d in the following 
manner. 

Beginning in the standard logical manner, we first consider the function enclosed in most 
brackets. We receive a net of form 1a representing expression: 

 
 Na(t) ≡ N2(t-1) (1) 
 
Proceeding outwards, we introduce two nets, both starting from nodes Na and N2. One of form 1c 
ending in N4. We receive: 
 
 N4(t) ≡ Na(t-1) ∧ N2(t-1) (2)  
 
We must advance time variable for previous expression where we substitute it in this formula. 
Which is equivalent to: 
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 N4(t) ≡ N2(t-2) ∧ N2(t-1) (3) 
 
Second of form 1d ending in Nb. Giving us: 
 
 Nb(t) ≡ Na(t-1) ∧ ~N2(t-1) (4) 
 
Substituting Na for its equivalent in proper time interval we receive: 
 
 Nb(t) ≡ N2(t-2) ∧ ~N2(t-1) (5) 
 
Finally we run net of form 1b starting in N1 and Nb to neuron N3. So that: 
 
 N3(t) ≡ N1(t-1) ∨ Nb(t-1) (6) 
 
Again, due to substituting Nb for equivalent formula, (6) can be expressed as: 
 
 N3(t) ≡ N1(t-1) ∨ [N2(t-3) ∧ ~N2(t-2)] (7) 
 
The whole net can be represented by figure 2. 

 
Figure 2. Net realizing expressions e). Modified from McCulloch and Pitts [16], to adapt to 
presented definitions. 

 
That way we can create nets realizing underlying logical functions. We can clearly see that 
McCulloch saw propositional logic as an underlying structure of human mind. He writes: 

 
To psychology, however defined, specification of net would contribute all that could be 
achieved in that field – even if analysis were pushed to ultimate psychic unit or 
“psychon”, for psychon can be no less than the activity of a single neuron. Since that 
activity is inherently propositional, all psychic events have an intentional, or “semantic” 
character. The “all-or-none” law of these activities, and the conformity of their relations 
to those of the logic of propositions, insure that relations of psychons are those of two-
valued logic of propositions [16, pp. 113-114]. 
 

This sentence presents author’s intentions of proving logical character of human mind activity. The 
nervous system is described as based on mechanics equivalent to propositional logic. Unfortunately, 
it highlights weak points of both logical approach and neural nets of McCulloch-Pitts type. This 
effort to “marry” logic and neuroscience marks the first and last attempt to do so by way of classical 
propositional logic. It may be because it highlighted certain weaknesses of logical approach – 
weaknesses we will analyze in the following paragraph. 
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3. Logic and Human Cognition 
 
The above described neural networks meet with plenty of critique. Some of it is coming from 
biological background. For example, it was quickly noticed that the assumption about neurons 
always being in one of two possible states is biologically inadequate. In the context of discussion 
presented in this paper, what is more important is the fact that some developments in research of 
human cognition put descriptive dimension of logic under doubt. It remained a possibility that logic 
described a normative system of what certain types of reasoning should be, but it no longer could be 
perceived as a representation of natural cognitive processes.  

If we accept descriptive dimension of logic, then at some level human reasoning should be 
based upon a set of simple logical procedures. However, humans tend to do surprisingly poorly 
when faced with tasks of performing simple logical procedures. This phenomenon was noticed and 
described by Wason in, named after him, Wason Selection Task [23], [24]. The task puts a subject 
in choice situation guided by a simple rule. The choice is made between cards. Each card has on it 
either a number or a letter. Cards, on a side visible to subject, read D, K, 7 and 3. The subject is 
then familiarized with singular rule of the task; “Every card which has D on one side must have a 3 
on other”. After that the question is posed; “Which if any, of the cards must be turned over to judge 
if the rule is true”. From the classical logic standpoint the “if” in the rule should be read as material 
conditional, making the rule D → 3. Hence, using modus ponens (MP), we may deduce that D has 
to be turned to check if there is 3 on back side. Likewise, using modus Tollens (MT), we deduce 7 
has to be turned over to ascertain if there is no D on the reverse. Making, assumed, correct answer 
D and 7. The most popular answer given is however, D and 3. In fact D is almost always given as 
one of the answers. Conversely, 7 is rarely seen as necessary to turn over. Some researchers, 
including Wason, see that as an evidence that humans are poor at even simple tasks. If we would 
accept Wason’s interpretation of “D → 3” rule, we have to accept that people are bad at using MT, 
so tasks requiring it as reasoning schemata lead to fallacious reasoning. 

Interesting development appeared out of certain rephrasing of Wason task [8], [11]. The 
original selection task took place in abstract domain of letters and numbers. Rephrasing the problem 
in a domain familiar to subjects changed outcome drastically. In the mentioned rephrasing, numbers 
and letters were replaced by ages and kinds of drinks. When the task is to confirm a rule “if person 
drinking beer, then that person is 19 or older”, subjects performed nearly perfectly. Noticing the 
fact that rephrasing Wason’s task in a familiar domain brings error rate down contradicts formal-
logical model of reasoning.   

The fact that context has an effect on the ability of subjects to deduce a correct answer may 
be explained by the theory of two competing systems of reasoning. It can be reasonably doubted 
that experiments like Wason selection task test what authors actually believed they did. Question 
can be posed: what does actually count as reasoning in natural environment? Proposing dual 
process theory of reasoning can explain the described situation. Here we assume reasoning consists 
of two systems supplementing each other. Describing system 1 Evans writes: 

 
System 1 is (…) not a single system but a set of subsystems that operate with some 
autonomy. System 1 includes instinctive behaviors that would include any input 
modules of the kind proposed by Fodor.(…) The System 1 processes that are most often 
described, however, are those that are formed by associative learning of the kind 
produced by neural networks.(…) System 1 processes are rapid, parallel, and automatic 
in nature; only their final product is posted in consciousness [5, p. 454]. 

 
By contrast, system 2 is slow, sequential and symbolic in nature. Logical reasoning belongs in 
system 2, because of that tasks performed by system 1 do not conform to rules of logic. This is also 
a reason why neural networks cannot be logical machines – system 1 is equivalent to a subsymbolic 
computing system.  
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We then have two approaches to reasoning. Let us call the first algorithmic: it states MP-MT 
asymmetry in Wason selection task is an effect of MT being harder to implement on algorithmic 
level. A sample of this approach can be found in Oaksford and Chater The Probabilistic Mind: 
Prospects for Bayesian Cognitive Science [17]. That is why reasoners trying to reason deductively 
have problems with finding the correct solution. The second, called non-logical reasoning, argues 
that subjects do not attempt to deductively find solutions to posed questions. That way MP-MT 
asymmetry is not a matter of competency gap but rather “inadequacy” of utilized competences.  

Authors Stenning and van Lambalgen [21] propose a different analysis of context effect on 
task results. They attack Wason’s assumption that “if” in the rule has to be interpreted as a material 
conditional, which puts doubt on the assertion that there is only one correct answer. They propose 
to distinguish between the two forms of conditionals: one descriptive; other deontic. That may 
explain why two statements (Wason task and Wason task rephrased in familiar context), of 
supposedly the same logical form can lead to radically different outcomes. The task when rule is 
seen descriptively, is viewed by subject, as concerning determining if the rule is true or false for the 
given cards. With deontic interpretation of conditional truth of the rule is not an issue, only whether 
the rule is being followed or not. They notice that the original task may be interpreted as containing 
descriptive rule, increasing the cognitive burden on subjects. However, in the context of this paper, 
the more important aspect is the observation of the processing side nonmonotonic logic provides 
adequate model for analysis of subjects’ reasoning. Presenting human reasoning in terms of 
nonmonotonic logic explains why reasoning in a system which could not be explained in terms of 
logic. More precisely it is cold but not in classical logic. This system can still be represented by a 
set of reasoning rules, just not build upon deductive inferences. In this view, deontic interpretation 
of the rule can be associated with classical logical conditional, when descriptive interpretation 
entails a different kind of conditional, nonmonotonic, that should be read “typically this X entails 
Y”. 

To answer what differentiates classical logic from the nonmonotonic one, let’s consider the 
following property of deductive logic, one that holds for relation of classical consequence “⊧”: 
Monotony: if A ⊧ B then A ∪ C ⊧ B. 

Monotony states that if B is a logical consequence of A, then it is also a consequence of any 
set containing A as its subset. In other words, adding a new premise to inference cannot pre-empt 
earlier conclusions. Monotony follows straight from nature of logical consequence relation, A⊧B 
holds when B is true on every interpretation on with every sentence in A are true. Clearly, every 
day inferences do not conform to this requirement. Actually, not abiding to it is a defining property 
of so called defeasible reasoning, the kind of nonmonotonic inference that supposedly describes 
how every day reasoning works. Literature is rich in analyses of reasons why deductive reasoning is 
inadequate in describing the so called everyday inferences [4], [18].  

There are many examples of nonmonotonic logics, but for our purpose semantic approach of 
Shoham [20] will be used. This theory is often referred to as preferential logic, it is a simple and 
elegant approach. Additionally it can be used to explain the MP-MT asymmetry and perceived 
system 1 - system 2 dichotomy.   

Definition 4 L∠ is a nonmonotonic preferential logic generated from L and ∠ when 
following demands are met:  
• In a standard logic L that satisfy following demand: for all A, B and C in L, if A⊧B, then also 
A∧C ⊧ B.  
• A strict partial order ∠ on the model of L is defined: M1∠M2, meaning that M2 is preferred over 
M1. 
• Preferred model is one that: Model M preferentially satisfies A (M⊧∠ A); M⊧A and there is no 
other model M’ such that M∠M’. We call M preferred model of A. 

We can define a preferential consequence relation for that logic in the following fashion: 
Definition 5 Preferential consequence: A is a preferential consequence of B (A→∠B) for any M, if 
M⊧∠A, then M⊧B.  
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In other words A→∠B if all preferred models of A are models of B. This relation is 
nonmonotonic because it is possible that A and C have preferred models that are not preferred 
models of A alone. So with addition of C it may be that that B no longer holds in all preferred 
models of A&C. 

Now we can notice that preferential consequence relation easily explains MP-MT 
asymmetry. It refers to preferred models of A, but also to all models of B. Because of it, this 
consequence relation does not contrapose. For the relation to be contrapositive it would be required 
that all preferred models of not-B be models of not-A. It is quite possible there exist not-preferred 
models of A wich are also preferred models of not-B. Thus, the definition is not satisfied for not-
B→∠ not-A, and MP-MT asymmetry is explained.  

 
4. Symbolic vs. Subsymbolic Paradigms  
 
Classical view of human cognition is one analogous to symbolic computation in digital computers 
[23]. On this account information is represented as a string of symbols in memory of a computing 
unit or on a piece of paper. On the other hand connectionist claim that information storage have a 
non-symbolic character, information is stored in weights of connections between units of neural net. 
Connectionists perceive mental processes as dynamic and distributes evolution of activity in neural 
net. Each unit of this net activates depending on strength of connections and activity of neighboring 
units.  

In late 20th century a heated debate ensued between proponents of symbolic and 
connectionist (subsymbolic) approach to cognitive science. One of most vocal opponents of 
connectionism were J. Fodor and Z. Pylyshyn [6]. They argued that no connectionist model of mind 
can have compositional semantics. That is the case because, as they argued, mental representations 
require systematicity and no neural network can exhibit this feature; therefore modeling of 
cognition have to be symbolic not connectionist. Systematicity is understood as a feature of 
representation that makes meaning of representation to correspond systematically to its structure. 
That means if we are able to represent expression “Peter killed Paul”, we must be able to represent 
expression “Paul killed Peter”. Putting details of this debate aside, prevailing view was that 
symbolic and subsymbolic approach are different and incompatible.   

Concurrently, radical connectionists claimed inadequacy of symbolic processing as a model 
of mind. We discussed this in part 3 of this paper. To reiterate, they claimed that symbolic 
computing poorly explains holistic representation of data, spontaneous generalization, effect of 
context, and many other aspects of human cognition captured by their models. This failure to match 
the flexibility and efficiency of human cognition is in their eyes a symptom of the need for a new 
paradigm in cognitive science. This approach can be called radical connectionism, and it agenda 
can be described as eliminating symbolic processing as inadequate in cognitive science. 

However, many connectionists do not view their paradigm as opposition to symbolic 
computation. So called implementation connectionists present an image in with mind is a neural 
net, but also a symbolic process on higher level of abstraction. In that view role of connectionist 
researcher is to find how a machine required to perform symbolic processes can be forged from 
neural network resources. Even more interestingly since 1990’s, models combining subsymbolic 
and symbolic paradigms appeared [1], [7], [25]. Unfortunately hybrid approach to problem fails 
address question about underlying difference between symbolic and distributed representation. 
Because of that it is proposed to inquire about possible equivalency between symbolic and 
subsymbolic models of computation. 

The idea is that connection can come again from the side of logic, similarly to original 
McCulloch and Pitts proposition. Instead of classical logic we would turn to nonmonotonic one. 
This way we avoid problems with inadequacy of logical description to data collected during 
research on human cognition. The close relation between symbolic computation and logic is well 
known [10]. With neural nets it have to be shown that every logical model of a system is 
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isomorphic to a member of distributed, or subsymbolic, subset. In fact, it is trivial to show that 
some nonmonotonic reasoning may be represented by neural networks. An example of neural net 
generatinc a nonmonotonic inference was shown as early as 1991 [2]. They propose to consider 
network consisting of four neurons x1,…, x4. They identify sets of active neurons with schemata. 
There are three schemata α, β, γ. Corresponding to following sets of active neurons:  α = x1, x2; β = 
x2, x3; γ = x4. There are two excitatory connections, one between x1 and x2, other between x2 and x3.  
Third connection between x4 and x3 is inhibitory connection. Assuming that inhibitory connection is 
stronger than excitatory one between x2 and x3. Following situation is possible: giving α as input, the 
network will activate β (α ⊧ β); extending inputs to α and γ, effects in withdrawal of β (α ∧ γ ⊭ β). 
That situation directly defy monotonicity, since including new premises (inputs) reduce set of 
conclusions. 

However, this is just one specific case when neural network exhibits behavior equivalent to 
some nonmonotonic theory. Can we have an equivalency theorem? Theorem of that kind would 
show that for every nonmonotonic theory there exist a neural network able to compute that theory. 
Fortunately theorems of that kind has been proposed by logicians over the last few decades. 
Holldobren and Kalinke [9] gives a theorem of that kind. They show that for every logical program 
there exists a three layer feed forward network which computes it. Other example is presented by 
Leitgeb [13], [14], [15]. His proposition is especially interesting in context of this debate. He 
propose a way to represent propositional letters as a set of nodes in neural networks. At the same 
time Leitgeb shows that any dynamic system performing calculations over distributed 
representation can be interpreted as symbolic system performing nonmonotonic inferences. What 
can be interpreted as functional equivalence of reasoning representation between symbolic and 
subsymbolic processes. 

 
5. Conclusions 
 
The methodological position pursued in this article was one which looks for unification. In the case 
under discussions the point was to assume that symbols and symbol processing are a macro-level 
description of what is considered a connectionist system at the micro level. Hence, the idea is that 
the symbolic and the subsymbolic mode of computation can be integrated within a unified theory of 
cognition. We demonstrated that logical approach can be applied to model and describe processes 
of human reasoning, previously regarded as evading symbolic representation. Which leads to 
believe that, at least functionally, neural network activity is equivalent to nonmonotonic inferences.  
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