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Abstract

The Euclidean ideal of mathematics as well ashalfoundational schools in
the philosophy of mathematics have been contesyethéd new approach,
called the “maverick” trend in the philosophy of thiematics. Several points
made by its main representatives are mentionedom fthe revisability of
actual proofs to the stress on real mathematicattipe as opposed to its
idealized reconstruction. Main features of realofsocare then mentioned; for
example, whether they are convincing, understaedadd/or explanatory.
Therefore, the new approach questions Hilbert’ssiheccording to which a
correct mathematical proof is in principle redueibb a formal proof, based on
explicit axioms and logic.

Keywords mathematical proof, axiomatic proof, formal prophilosophy of
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1. Historical Background: from Euclid to Hilbert

For centuries mathematical proofs have been segpedal, different from any other kind of
argument. Mathematicians and all educated Westeroeuld point to their exceptional traits:
proofs in mathematics seem more precise, more ihhomore compelling, more certain, more
logical than any other proof-like discourse — socmmore that they can be seen as absolute. A
crucial evidence has been provided by the Euclidge@ammatic system of geometry. This book was
taught to all who were able to follow mathematicl aserved as a paradigm of mathematical
argument. Euclid’'s system was seen as completegedmetrical theorems were supposedly
reducible to the initial general “common notiongidaspecific postulates. As late as thé"19
century, it turned out that some implicit assummpdiovere used and that a more complete treatment
was needed in order to achieve the goal of halnagystem of geometry that is purely logical and
does not depend on intuitive visualization. Thiswassible due to the work of Moritz Pasch and
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David Hilbert. In addition, the development of nBaelidean geometries showed the limitations of
the intuitive methods and the need for rigor. All these developments did not diminish the
influence of the Euclidean ideal of axiomatic matla¢ics. Rather, they seemed to confirm the view
that mathematics consists, at least ideally, obrasitic theories that can be presented in a very
rigorous way, making explicit all assumptions.

One element of the contemporary version of theragitc method has been different from
the approach of Euclid: rather than defining disette objects of the theory (for example, points
and lines) the objects were indirectly defined by axioms that expressed the main properties of
the objects and, even more important, basic relatioetween the objectdlothing more was
assumed than what was stated by the axioms. Heiltlwert$ famous remark that the objects of his
system of geometry can be anything, for instanablés, chairs, and beer mugs,” as long as they
satisfy all the axioms. This approach made possibleew variant of the axiomatic method; it
slowly emerged in the ocentury. Namely, arbitrary axioms can be propasetitheir realizations
studied. Hence the notion of a group and othectiras studied in abstract algebra. How they can
be applied to the world is another matter. Pureheragaticians may disregard it. In practice,
however, axioms were never completely arbitraryheg they conveniently codified regularities
observed in the world of mathematical objects. ¥et idea that axiomatic theories can have
multiple realizations became a new norm. In th& 2éntury the theory of models emerged, or a
study of possible theories and their various irggions.

In order to have a strict mathematical theory ofdeis it was necessary to have a full
description of the logical machinery utilized tope theorems form axioms. This was possible due
to the work of Frege and later proponents of l@gici Hilbert was happy that as if in result of “a
preestablished harmony” logic itself was axiomatizthe so-called first order logic was identified
as basic.

In addition, due mainly to Georg Cantor, actualifinite sets were introduced as an object
of study in mathematics. The general concept ottawss also necessary in order to develop
systems of higher order logics that reflected meashieaturally used by mathematicians. To make
clear what properties of sets may be used so thatam avoid antinomies that were plaguing the
early research dealing with infinite sets, Zermakiomatized set theory. Since then, in the early
20" century, it was developed by Fraenkel and otherthat the ZF (or ZFC, that is, ZF with the
axiom of choice added) system emerged that has been as an adequate basis for abstract
mathematics. Interestingly, the axiomatization eif theory was made in the spirit of Euclid: the
principal properties of the intuitive concept ofet were listed so that all other properties ofrépu
sets” could be logically derived.

As a result of all those well-known developmentsnse hundred years ago it became widely
agreed that the axiomatic method could be seemm@sative. Its strengthening, namely the notion
of a formalized theory, became the ideal of mathealatheory, especially for those who assumed
that the right approach to mathematics must bergled in logic. A formalized theory is axiomatic,
the axioms are expressed in a perfectly defineduage, its underlying logic is axiomatized, and
the meanings are assumed to be grasped by alldkesas together with formal rules of derivation
of formulas from other formulas. This picture okethxiomatic approach and its refinement, the
notion of formal theories, has been highly sucedssid extremely influential among philosophers.
For some analytic philosophers this picture becanmodel of scientific and even philosophical
analysis.

The notion of axiomatic mathematics involved anarsthnding of mathematical proof. Its
essence was seen in Hilbert's concept of formabipibis a sequence of formulas of the underlying
formal language, each of the terms of the sequéeneg either an axiom or the result of an
application of one of the explicitly listed formaliles of inference to previous terms of the
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sequence. There are variants of these notiongxtmmple the sequent calculus, and extensions, for
example rules with infinitely many premises, bug theneral idea remains: proofs are essentially
derivations, very much like calculations. While gl@dy knows that real proofs are very different
from this ideal the supposition was that they armanly available indications of ideal proofs. The
underlying assumption, then, called sometimes IHikb& hesis or the Frege-Hilbert Thesis, is as
follows:

Every real mathematical proof can be converted anformal proof in the appropriate
axiomatic theory.

This attractive hypothesis has been, however, tegjedy more and more philosophers of
mathematics since at least the 1960s.

2. Movement Against the Euclidean Notion of Proof

Probably most mathematicians do not really carethdrereal proofs can be converted to formal
proofs or not. They may believe those colleagues sdy that this is the case, but they know well
that this has nothing to do with their practice pbving mathematical results. Many would
probably express doubts as to whether the fornmaifps really always possible, even in principle.
It is hard for me to say how many would, since \éhaot heard about representative studies on the
issue conducted among professional mathematicians.

Whatever the opinions regarding Hilbert’'s Thesisoaghthose who produce proofs, an
increasing number of philosophers of mathematicd arathematicians reflecting upon their
profession have begun to analyze mathematical prasfthey really are. This is a part of a more
general turn in the philosophy of mathematics. Thange began with the analysis of proofs of
Euler’s formula for polyhedral, V-E+F=2, made bhaititly by Imre Lakatos in the 1960s. Among
others who contributed to the new trend let me manPhilip Kitcher, Reuben Hersh, Paolo
Mancosu, Yehuda Rav, Carlo Cellucci, Brendan Laridavid Corfield, and Brian Rotman. Their
positions on many issues in the philosophy of nrattes differ, but all tend to deny the possibility
of, and the need for, foundations of mathematibst is, the idea of reducing the whole of
mathematics to one theory, treated as its foundafibis new attitude is sometimes called, after
Aspray and Kitcher [1, p. 17], “the maverick” tradn. It is opposed to the traditional philosophica
schools of the foundations of mathematics: logicisimrmalism, constructivism (including
intuitionism). Some representatives of the new apgin are playing down the role of logic. Many
want to understand mathematics as a part of humléure. Most of them doubt, to varying degrees,
the adequacy of realism in the philosophy of maties. All want to begin with genuine
mathematical practice.

It will be useful to mention briefly some of the mapoints made in their works, especially
those that are relevant to the analysis of prdofsll summarize some views of a few of the above-
mentioned authors, those who according to me haen bnost innovative. Actually, there is
something paradoxical in looking for novelty inghew approach to mathematics, as the point of
the new trend was to observe closely what real ema#tticians actually do rather than to invent
something new about them. A tension is, howeveyitable between experiencing, in this case
experiencing mathematics, and describing the eapee. We always need to indicate what strikes
us as most important and name it, and this oftguires invention: we try to detect relations, which
may be hidden; we attempt to form a picture of tiechanism underlying the experience; and it
may happen that we become aware of the realitegsatte so obviously present as to be missed in
earlier descriptions. (See below, in this sectiexamples of each of these three categories: (i)

156



hidden relations, (ii) underlying mechanisms, (@bvious features that are easily ignored.) More
generally, we never provide a completely neutrabaat of an experience or a historical process,
even if we do our best to remain neutral. Rather,present a reconstruction taking advantage of
our understanding of the situation. In the casmathematics this can be far from obvious.

Thus, Lakatos in his celebrated book [25], basegapers written in the 1960s, presented
the theory of the dialectical process of the dgwelent of mathematics from proof to refutation to
improved proof to another refutation, etc. This nwedhat proofs can be mistaken or at least
imperfect even if they are recognized as flawléBse refutation comes from the (intuitive)
mathematical background that provides potentiasifiats. By the way, Lakatos provided an
insightful rational reconstruction of the histotigaocess of proving, so this is an example of (ii)
the underlying mechanism of the mathematical eepeg, namely the process of proofs and
refutations. Also, he indicated the relation of gfeoto the environment in which they live, and
which can provide counterexamples. Lakatos intredube term “quasi-empiricism” (see his [26])
together with the claim that the methods used tabéish results in mathematics are not as
(qualitatively) different form natural sciencestasd been assumed in the received tradition in the
philosophy of mathematics. (The term “quasi-empltigvas also used by Putnam [30].)

Reuben Hersh, generally known for a beautiful papzation of mathematics — the real one,
not the logicians’ picture of it — in the book [€p-authored with Philip Davis, is another foretath
of the maverick tradition. In [16] he introducecktHistinction between the front and the back of
mathematics. This distinction, borrowed from samgital and cultural studies is, by the way, a
good example of (iii), an obvious feature that wgmred by philosophers of mathematics. Namely,
it is clear to every mathematician that official theematics, presented in publications and formal
lectures, is radically different from the tentatigforts, guesses, trials, hypotheses and mistakes
present in the mathematical kitchen. Hersh alscoeated, on many occasions, the idea that
mathematical entities are cultural creations ha@ngntersubjective reality. This cultural approach
was initiated by Raymond Wilder [43] (see also )44ut Hersh was emphasizing much more
strongly the inflexibility and objectivity of mathmatical creations, another point obvious to any
working mathematician.

Let me mention that to represent both aspectsfertrass and objectivity of mathematical
entities, and keep them as equally important | haw®duced the concept of “suprasubjective
existence” in [24]. Suprasubjective is defined @ensubjective and, at the same time, “objective
without objects.”

Rav [32] argues that many mathematical theorie® mot been axiomatized and it seems
that they will never be: any attempt to do this lgorequire far reaching changes in the theory.
Even group theory, defined by axioms of the graxges higher order methods that have little to do
with axiomatic theories. And actually there haserébeen a unique conception what axioms are”
[33, p. 125]. Independently of this, Rav [31] prepd an interesting solution to the age old problem
of whether what we do in mathematics can be chaeniaed as invention or discovery. According to
his proposal, concepts are invented and theoreendiscovered. In relation to our main topic, he
emphasized the crucial role of proofs in mathersafihey are the heart of the matter. Theorems
are only convenient expressions of what has beeamibe proved. Proofs are like bus routes and
theorems like bus stops that are established ather arbitrary way.

Cellucci, in several publications, for example #] pnd in [6], has been advocating the
concept of analytic proof that he traces back &id?while the concept of axiomatic proof, used by
Euclid, was recommended by Aristotle. Cellucci nedsi us that a mathematical work begins not
with axioms but rather with a problem. To produceamalytic proof one has to find a suitable
hypothesis that makes it possible to solve the Iprob This hypothesis must be plausible and
sufficient for a derivation of the theorem. The idation may be deductive, but this is not
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necessary. Thus the crux of the proof is to firel gbitable hypothesis. It may be a construction, a
concept, a theorem, a picture, a theory, or a ctume. The search for a right hypothesis is cdgtain
pervasive in research and this, by the way, previde example of (i), a hidden relationship
between elements of mathematical experience. Gelilaims that everything in mathematics is
hypothetical: concepts, objects, theorems. He @lms that the nature of proof in mathematics is
not essentially different from the method of ottsmiences and methods of arguing in other
situations. In [6] a comprehensive theory of knalgle is presented encompassing mathematics.

Many of the points made by the above authors amerbacause of the emphasis put on the
practice of mathematicians, and in particular thexperiences. Talking about mathematical
experience rather than mathematical reality onetsvdo emphasize the human aspect of
mathematics. The same emphasis also applies entigsis of proofs. One does not need to reject
the presence of objective, mind-independent aspettsmathematics to claim that needs,
peculiarities, and limitations of human beings md@ispensable for any account of mathematical
proofs. They must explain the matter, so some @opsychologism seems to be inevitable. (See
Krajewski [23].) Incidentally, this is another expl®m of an obvious property that is often ignored
by those who look for completely objective descapt relations between essences, etc.

A much stronger claim to the effect that mathensasca human activity and nothing more
has been made by Rotman. He is close to the viewnathematics as consisting of social
constructions (David Bloor initiated the whole schof sociological account of mathematics; see
Ernest [11]). He is, however, watching the behaefomathematicians in a very penetrating way. In
[34] Rotman introduced “a semiotic of mathematiasd pursued the issue further in [35] and [36].
What mathematicians do is described as “thinkind seribbling” performed in order to address
other mathematicians. Each mathematician is andlymgo three levels: a mathematical
disembodied Subject manipulating signs, aboveeitréal Person with a body and history, telling a
metanarrative, and below it a skeletal Agent da@algulations and constructions, also infinite ones,
in an imaginary world. A proof is seen as a thowgjpgeriment, and mathematical assertions
become predictions about the Subject’s encountihssigns.

Let me also mention some other works important tfeg new philosophical approach.
George Polya and his work [29] on non-deductiveuargnts in mathematics was as an important
source, Thomas Tymoczko’s influential anthology][A@s served as a reference, Reuben Hersh’s
anthology [19] gathered together many non-standgmtoaches to mathematics. In another vein,
the book by Stanislas Dehaene [8] on our in-boptgmathematical abilities added the neuronal
aspect, and the book Lakoff and Nuafez [27] empldsiarther the fact that our mind is embodied
and all the time we use metaphors relating to thesipal world.

All varieties of the new, maverick, approach to gidlosophy of mathematics share several
points. First, the rejection of the Euclidean mygbcording to which mathematics is fully objective,
completely universal, and absolutely certain. Sdbgra most concentrated attack has been on the
idea of the unification of mathematics within onbedry, especially on any form of
foundationalism, in particular the dominant propasahave a version of ZF set theory as the
foundation. Thirdly and more generally, any impasitof philosophically motivated standards on
mathematical activity is rejected. The genuine ficacf research mathematicians is declared to be
the starting point. This can be expressed, usiagaim of Penelope Maddy (who, however, wrote
as a foundationalist rather than a “maverick”), “agathematics first”, against the traditional
“philosophy first” (hilosophia primg& and the modern “science first.” Among the maigredients
of practice is the mathematician’s proof.
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3. Proofsas They Really Are

In real mathematics problems are proposed andigotuire sought. At the beginning of research
for proofs there are problems, not axioms. The wafrlaxiomatizing various domains is also an
example of a problem: deciding if given axioms suéficient for proving a statement is just one
more possible math problem. Below, some major featof real life proofs are listed. The proofs
must be convincing, understandable, explanatory. K@rsh [17]: “Proving is convincing and
explaining.”) Moreover, proofs are meant as vdiital, but at the same time they contain gaps and
are revisable.

3.1. Convincing

Most often proofs refer to neither axioms nor otfiest principles. Instead — as emphasized by
Lakatos, Hersh and others — they refer to estaalismathematics. Whatever is used must be
acceptable to appropriate experts. Proofs are megsén the way that makes them understandable
to experts. (Textbook proofs for students are ofteore detailed, but they are fundamentally
similar, only a more limited expertise is assumddcg aim of a proof in a research paper is to
convince experts: this category varies accordingh® context — it can mean all professional
mathematicians or, at the other end of the spectaumandful of colleagues involved in researching
the same topic. In each case a broad corpus diflisstad mathematical results is assumed as given,
its validity is not questioned. Of course, mistakegppen. They are, however, sooner or later
identified and eliminated. A subtler situation tharsimple mistake can occur: sometimes a new
understanding of concepts emerges and previoukgesa rejected or limited to special cases. This
was well illustrated by Lakatos who used the Edtemula for polyhedra. Another well-known
example, also considered by Lakatos, among margrgtis provided by Cauchy’s theorem on the
continuity of the limit of a converging sequencecohtinuous functions. Now it is considered a
mistake, because uniform convergence must be desdamather than the weaker pointwise
convergence. There exist, however, analyses indgdhe correctness of Cauchy’s theorem if
instead of the current concept of convergence othef continuum another one is assumed,
presumably one closer to Cauchy’s original undeditey. A perfect example is provided by
Robinson’s nonstandard analysis: pointwise convergen standard and nonstandard numbers is
sufficient for Cauchy’s theorem.

3.2. Understandable

Another psychological property is often assumed fmathematicians: a proof must be
understandable. For a human mathematician (are tey other?) one of the most convincing
methods of proof is by producing appropriate piesur This usually enables immediate
understanding. Sometimes the picture itself canstt the proof. Many pictorial proofs of the
Pythagorean theorem serve as examples. This sorpradf is possible for many finite
configurations, claims Giaquinto [13]; and Browr} fays that perhaps also for some infinite ones.
More than that, often a picture accompanies thentign of a proof in the mathematical “kitchen”,
to use Hersh’s term, even though it rarely findswitay to the official presentation. Even if the
matter is not geometric some visual arrangemenggitah pictures — imprecise, hazy, messy, often
moving, difficult to describe — seem to be commbimey help us understand the situation. They are
presented to other workers in the kitchen, to helgke the point, to convince and induce
understanding.
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Even when no picture is associated with the prtmfie understandable the proof must be
surveyable. Its structure should be graspable. pneferably, one must be able to tell what is its
point. While there are proofs which are not underdable, for example consisting only of
calculations, they are seen as less satisfying. snavay, the discovery of such a proof is usually
guided by some understanding. Using Rotman’s teiitngs important to be able to have a
metanarrative explaining the essence of the naeréiiat constitutes the proof. This leads us to the
next point.

3.3. Explanatory

One of the main features of proof is that it mugtlain the concepts involved, relations between
them, and show not just the truth of conclusionddsbwhythe conclusion is true. Often proofs are
not providing sufficient explanation, for instandethe crucial part consists of a calculation ared
picture or idea can be indicated as a clarificatibthe formal manipulations. In such cases a deepe
understanding of the proof is sought or other @k welcomed so that explanation can emerge.
And actually, very often new proofs are soughtxplan the aspects of the situation that seem still
hidden. Let me mention an example from my own practA long time ago | formulated a
conjecture (to the effect that a recursively saattamodel of Peano arithmetic admits a full
satisfaction class — the strict meaning of the seismot important here) that was soon demonstrated
in collaboration with two colleagues and publishiedotlarski, Krajewski and Lachlan [22]. The
proof was rather indirect, using a proof theor@éichnique. Many years later, long after | had
stopped working in this area, Enayat and Visserf¢@hulated another proof, much more natural,
since it uses only model theoretic constructionsd Aecently, in 2020, James Schmerl, in the yet
unpublished paper “Kernels, Truth and Satisfactitmpk the model theoretic proof, and showed
that if “stripped to its essentials,” it can be egsed as a special property (the existence of a
kernel) of certain directed graphs. Thus the tezdinproblem in the proof was reduced to graph
theory. The specific logical notions of satisfantionodels, etc. were invoked only as an application
of an abstract graph theorem.

Even this modest example illustrates a generaltpiiis accepted and common to look for
a proof by taking advantage of other branches dhematics than the one in which the problem is
formulated. A famous example is provided by Fersafist Theorem. Also merging methods and
concepts of various branches is seen as valualeexample probabilistic methods are used in
various ways even if probability was not mentionedhe initial problem. New branches were
created when similarities of constructions in digfet parts of mathematics were noticed and
properly defined. Or, as a well-known saying gagsyd mathematicians perceive analogies, and
the best see analogies between analogies. Catiégpamy is a good example.

It is also important to remember that there exasttative proofs or proofs produced by
doubtful methods, for example by analogy. A famexample is provided by Euler’s calculations
of some infinite sums. He used infinite polynomiatsif they had properties similar to the finite
cases. In this way he calculated the sum of thieserf the reciprocals of the squares of natural
numbers as equal t6f/6. (See Polya [29, p. 20], or, for example, Putjafi.) Of course, Euler
was aware that his proof was not certain, but wihertalculated the initial segment of the series
and found it coincide with the proposed numbertapgome decimal position, he was convinced
that the result was true and the proof fundamentalirect. Later he found a more standard proof.

All the above examples indicate how natural andrdeke it is for mathematicians to use
unanticipated methods. In other words, proofs candyy far from being pure. Rather, anything is
accepted as long as it leads to the aim of decitiegproblem one way or another. The idea
advocated by logicians that there is an establisredework, language, axioms, and proofs are
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supposed to be conducted within the frameworkjngly not true in living mathematics. On the
other hand, there is an attractive element toitlga, and actually finding a pure proof of a major
theorem established by extrinsic methods is seea @suable achievement. To introduce some
“purity” one can also formulate a comprehensiveotfien which all the methods used to solve the
problem are expressible. One can also try to rénactshe whole proof in set-theoretical language.
Such moves are, however, alien to an overwhelmiagpmty of mathematicians. And even if the
proof can be reconstructed, it can no more be asimoing, understandable, explanatory as the
original argument. | believe that the explanatooyver is felt as the single most important feature
of proof.

3.4. Revisable

The above-mentioned two examples, Euler's formwla dolyhedra and Cauchy’s theorem on
continuity of the limit of continuous functions,®hk that proofs are revisable. This is not something
mathematicians usually accept. When is a proof ssegood, proper, correct, worth its name? To
guote Epstein [10, p. 137] proofs “are meant tovakd.” That is to say, it is impossible for the
conclusion to be false if the assumptions are fftae. proof is supposed to show that something is a
fact. Yet new evidence may emerge and the finalitthe proof might turn out to be illusory. This
possibility is emphasized by all champions of rieverick philosophy of mathematics. How is this
possible?

One reason for the collapse of a proof is dueh® possibility of changes in our
understanding of the concepts used in a prooti{efconcept of polyhedron). Another reason is due
to changes in the standards of rigor (cf. Euleddcwation of the sum of the series of the
reciprocals of the squares of natural numbers).aviether reason is due to the chance of errors that
keep popping up. While, as mentioned above, ieisegally believed that errors can be ultimately
overcome, the more complex the arguments the mareaple are either mistakes in proofs or
omissions that can be threatening. Some importgamples have appeared rather recently, for
example enormously long proofs, like the classifaraof all finite groups that has been achieved
by a long collective process involving many matheoens. There were leaders of the effort, but it
seems that nobody has checked the whole proof, {(&eexample, Byers [3].) Still it is believed
that the job has been done. It is not impossiblaygh, that something has been overlooked.

Another important kind of example emerged when oatens began to be used in
mathematics. There exist proofs partly executeddiyputers. The four color theorem is the best-
known example. (See Tymoczko [39]; it was the fpbktlosophical analysis of computer-assisted
proofs.) The possibility of error contained in ti@rdware used is a new source of uncertainty. Yet,
repeating the proof on other machines very sigaiily reduces the chance error. It is probable that
the chance human proofs contain errors is higher.

In addition to computer-assisted proofs there apbabilistic proofs. Using it one can prove
that a very large number is prime but the proofcpdure uses several random moves and is so
conceived that it gives the result (that the gimamber is prime) only with a very high probability.

If the chance of error is less than fave can be pretty sure that the result is cor(&ge, for
example, Rav [32] for more details and referenogbe papers, from the 1970s, by Michael Rabin
and by Robert Solovay and Volken Strassen.)

This last example gives a proof that there lasea fidemathematical proofs that lead to
conclusions that are not certain. The claim of “tmavericks” is that all proofs share this
characteristic. This applies even to most formasorAs indicated by Cellucci and also by Friend
[12, p. 207] even formalized proofs can have “exdé gaps”. These are gaps residing in the
external context of proof, specifically in the jéisation for an axiom or rule of inference. We ¢ak
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it for granted because we assume a standard iataetjpn. Yet a non-standard interpretation can
appear, even of a logical symbol or of a basic ephtike that of a set. Then some of the obvious
properties may no longer be true. Think of the lafvexcluded middle which is rejected by
constructivists or of the concept of set as defimga set theory other than ZFC.

4. Conclusion

There is a whole spectrum of the views on the eatirmathematical proofs. An extreme position
was expressed by Hardy: there is no such thingmed, “we can, in the last analysis, do nothing
but point,” so there are only rhetorical “devicesstimulate the imagination of the pupils” [14, p.
18]. The other extreme is expressed by Hilbert'ssi$t real proofs are abbreviations and
approximations of the ideal formal proofs. Hersloterthat the belief in the Thesis “is an act of
faith” [17, p. 391]. Logicians tend to believe their evidence is inductive: so much has been
formalized that it seems that we can never encountirmountable obstacles if we try hard
enough. The point illustrated by the consideratiomstained in this paper is that even if this is th
case and in principle we can convert each proof @atormal one, this is not really significant. The
most important features of real proofs — their gatonvincing, understandable, explanatory — are
lost in the process. And the reasons for revidgbdre not present within the formal proof. The
maverick philosophy of mathematics has succeedeeximbiting the whole range of problems
related to Hilbert's Thesis. The debate on the ipdgg and significance of formalizability of
proofs continues.
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