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Abstract

This note discusses some problems concerning ietergtandard, and non-
standard models of mathematical theories. We ptntain to the role of
extremal axioms in attempts at a unique charaetgoiz of the intended
models. We recall also Jan Widki's views on these issues.
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1. TheDistinction: Intended Modd versus Standard M odd

Mathematical theories may concern either a spekcfiaucture or a class of structures. Examples of
theories of the first kind include theories of famiental number systems (natural numbers,
integers, rational numbers, real numbers, complembers), certain systems of geometry (for
instance Euclidean geometry), and possibly alsotlsedry, at least at the early stage of its
development. Theories of the second kind includeom of groups, fields, topological spaces,
vector spaces, and so on. The distinction in qoestpplies to modern mathematics, it does not
make sense in the case of mathematics before tbaddalf of the 19th century.

The notions of intended, standard and non-stanaderdels may be applied in the case of
theories of the first kind, for obvious reasonse Térms ‘intended model’ and ‘standard model’ are
used sometimes interchangeably in literature. Ippse to distinguish them in the following
manner. The intended model of a theory is a stractthich motivated the development of the
theory in question. As a rule, this structure hasrbinvestigated for a long time and its properties
are based on well-established mathematical inhsti@merging from the research practice.
A necessary condition for a structure to becomentanded model is thus its domestication in the
mathematical research. One could also say thatdettmodels are cognitively accessible to a high
degree. Then there emerges a theory of such dwseyaltimately an axiomatic theory.

The above characterization of the concept ‘intendemtlel’ is intuitive, which in turn
implies that the concept itself is also intuitive prominent example of an intended model in this
sense is the natural number series with arithnmiedigarations defined in the usual way. Rational,
real and complex numbers (as understood beforedhstruction of the corresponding axiomatic
theories of such numbers) provide further exampleseems that the universe of the naive set
theory could also be considered an example inrésigect.
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The notion of a standard model, in turn, may beduced only after the theory in question
has become a fully formalized theory, with overipecified primitive terms and axioms
characterizing them. In this situation the classabfmodels of the theory in question can be
established. This class may consist of only oneahod of many models, which depends on the
language of the theory and the underlying logicpagnother aspects. In the first case we obtain the
standard model at once. In the second case we migychoose one of the models and call it
standard. | propose to call a model ‘standardit i§ most closely related to the intended model.
The similarity between intended and standard mgteluld be based on a kind of isomorphism.
Because the standard model of a theory is a spetdment of the well-defined class of all models
of the theory in question, it is a genuine mathérabbbject and as such it is well-defined, too. We
should remember, however, that the natamdardwas given to it on the basis of our decision. The
latter was supported by the observed resemblandbeostandard model to the intended model
given in advance. It may also happen that certadorems concerning the standard model provide
additional support for our decision. Still, theestlon of the namsetandardis based primarily on
pragmatic criteria.

The standard model of arithmetic is determined welig (up to isomorphism) on the basis
of second-order Peano axioms. In the case ofdindgr Peano arithmetic its standard model is only
one of the continuum many countable models ofttie®ry. According to Tennenbaum’s theorem,
it is the only recursive model of this first-ordbeory. It is also its prime model, meaning thataih
be elementarily embedded in any other model ofthleery in question. Non-standard models of
arithmetic contain infinitely large numbers.

The completely ordered real field (satisfying tlihe upper bound property) is determined
uniquely (up to isomorphism). It is commonly acegpts the standard model of the arithmetical
continuum. It is also a maximal Archimedean field ki is not algebraically closed. The complex
field, in turn, is determined uniquely (up to isamploism) as the only algebraically closed field of
the characteristic zero whose transcendence degegethe field of rational numbers equals the
continuum. No order compatible with the arithmdtimaerations is possible in the field of complex
numbers.

The (first-order) theory of real closed fields isngntically complete, meaning that all
models of this theory are elementarily equivaléet,have the same set of true sentences. The real
numbers, which form a real closed field, are thusracterized uniquely with respect to elementary
equivalence in the first-order language.

The hyperreal field is also elementarily equivalesth the field of real numbers, but it is
not an Archimedean field (it contains infinitesis)al The rather unfortunate namen-standard
analysisgiven to the theory concerning the hyperreal frelagly suggest that hyperreal numbers are
non-standard. However, it is mainly the matter @atmematical research practice to decide, on the
basis of accumulated knowledge and fruitfulnesapylications, which structure should be called
standard.

A paper by Solomon Feferman [8] discusses the murest which formal representations of
the geometric continuum could be thought of asdeteth Feferman lists a few candidates: Euclid's
continuum; Cantor’s continuum; Dedekind's contingidibert's continuum; the continuum as the
set of all branches in the full binary tree; ane ¢tontinuum as the famiR(N) (the full powerset of
the set of all natural numbers). Feferman summatize paper on conceptions of the continuum as
follows:

Of all the conceptions of the continuum considenede, only those of sec. 3 stand as
structural ones, and of those olyandP(N) stand adasicstructural conceptions. For,
the continuum in Euclidean and Hilbertian geomedrgot an isolated notion, while the
continuum as given by Cantor's and Dedekind's caogon of the real numbers, are
hybrid constructions. The s&Y of all sequences of Os and 1s isolates the setetieal
component of Cantor’s construction, while the Bgt)) of all subsets oN isolates that
of Dedekind’s construction, but both of these lestrely the basic geometric intuition
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of the continuum. On the other hand, it does nonhtagainst Cantor’s and Dedekind’s
conceptions of the continuum in the form of thel mamber systenR that they are
hybrids of geometrical, arithmetical and set-th&oneotions. On the contrary, by a kind
of miracle of synergyR has proved to serve together with the natural reret as one
of the two core structures of mathematics; togethey are thesine qua norof our
subject, both pure and applied.

If first-order Zermelo-Fraenkel set theory is catsint (which cannot be proved in the theory itself)
then it has a plentitude of models. It is commadgepted in the mathematical community to call a
model of this theorystandard if the interpretation of the membership prediciatet is the real
membership relation. Models of set theory withdugt &xiom of foundation are usually seen as non-
standard models.

The distinction betweegenuine (normal, natura) etc.) mathematical objects and those
calledunintendedunwilling, imaginary etc.) was noticed in the history of mathematicsnebefore
the second half of the 19th century. For exampgative or imaginary numbers were long rejected
as legitimate mathematical objects before theyllfinbecame accepted by the mathematical
community. It is important to make a distinctiontdheen anon-standard(object) and an
innovation Haim Gaifman discussed the followimgnovationsin mathematics in his paper [11]
devoted to the non-standard models: the discovenyationals; the incorporation of negative and
complex numbers in the numeral system; the extarnsidhe concept diunctionin the nineteenth
century; and the discovery of non-Euclidean geoye@aifman gives arguments that such
innovations should not be considered non-standdedalso discusses certain further candidates for
being a standard mathematical object, includgjl-ordered and constructible sets. The full
powerset operation, on the other hand, escapesthreiiist of standards.

There are several ways of constructing non-stanahadels of mathematical theories. Let us
consider Peano arithmetic (PA). If we expand itgjleage by a new individual constanand take
into account an infinite set of sentences: {—n = c:n € N} (wheren is the numeral denoting the
natural numben), then each of its finite subsets has a modeliafaflows from the compactness
theorem that itself has a model. The denotationcah this model is different from each standard
natural number and hence the model in questionoisstandard. Another possibility, already
anticipated by Thoralf Skolem, is to build a suigabltraproduct (actually, an ultrapower) starting
with the standard model of PA. One can also considall binary tree of expansions of arithmetic
and show that each branch of this tree corresptimdsmodel of PA; one of them is the standard
model, while all others are non-standard models.WwMecome back to the latter possibility below,
discussing Jan Walski’s views on non-standard models.

2. On theOrigin of Metalogical Concepts

Claims about uniqueness of models require preosis bf comparison of the models themselves.
There are essentially two ways of characterizing itidistinguishability of models of a given
theory. One of them is structural: we may ask wetihe models are isomorphic (or partially
isomorphic, or one of them being a homomorphic ienafjthe other, and so on). The notion of
isomorphism emerged in algebraic considerationhénearly 19th century. Isomorphic structures
are structurally indistinguishable. If all modelsaotheoryT are isomorphic, then we say tHats a
categoricaltheory. A theoryrl is categorical in powek (wherex is an infinite cardinal number), if
it has a model of power and all its models of power are isomorphic. It should be stressed that
first-order theories cannot be categorical, witke #xception of certain trivial cases. This is a
consequence of Lowenheim-Skolem-Tarski theorem hvisigys that if a theory (without finite
models) has a model, then it has models of alhit&icardinalities.

Another kind of indistinguishability of models isaged on semantic criteria. We say that two
models areelementarily equivalentf the sets of sentences true in them coincideh&oryT is
(semanticallyompleteif all its models are elementarily equivalenttifo models are isomorphic,
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then they are also elementarily equivalent, ancc@emategoricity implies semantic completeness,
but the converse implication does not hold.

The notion of categoricity originated in the papefsEdward Huntington and Oswald
Veblen. Huntington used the tersufficiencyin 1902 and Veblen replaced it by the term
categoricityin 1904. In the nineteen-twenties Abraham Fraeakel Rudolf Carnap used the term
monomorphy (Monomorphiein German) in the meaning in question. Fraenked &arnap
considered also a kind of semantic completenedkedchy Carnapnon-forkability in German:
nicht-Gabelbarkeijt It should be stressed that before emergenceetifdeveloped metalogic the
notions of categoricity and semantic completenesseewot sharply separated. In the absence of
precise formal logical tools the claim that isomogmn implies semantic indistinguishability was
understood evident by Huntington, Veblen and alsdiex by Richard Dedekind. An important
early contribution to the relationships betweenséhenotions is the paper [15] written by
Lindenbaum and Tarski. Tarski’'s paper [22] from Q9printed as appendix in [16]) elaborates
further this issue. Tarski introduced the notionetdmentary equivalence in the nineteen-fifties.
Many important observations concerning the ememgemd mutual relations between the notions
in question are contained in [1], [6] and [7].

Categoricity, categoricity in power and semantimpteteness were further characterized in
full detail in classical and modern model theorlieile is no need to report on these results here; an
interested reader may consult for example [14]1Gi.[Let us only add that the tools from model
theory are sufficient for talking about several dgnof indistinguishability of models and the
uniqueness of these models.

3. Extremal Axioms

The term ‘extremal axiom’ was introduced in the grajgl] written by Carnap and Bachmann. The
authors tried to present a general form of thesenax using the logical framework of the theory of
types. At the beginning of the paper they writeirigi [S] which is the English translation of [4]):

Some important axiom systems are so constructeaditbiaa series of axioms is given,
making certain statements about the basic concdphe axiomatic theory, and then at
the end an axiom of a special sort appears whiplaraptly speaks about the foregoing
axioms and not about the special concepts of theryh The most famous axiom system
of this sort is Hilbert's axiom system of Euclide@rometry. It ends with the famous
‘completeness axiom’ which runs as follows [Thetfate given here by the authors
reads: D. HilbertGrundlagen der Geometrigeipzig and Berlin). We take the Hilbert
completeness axiom in the form it has in edition8, 2 ot the ‘linear formulation’ of the
7th edition of 1930. — J.P.]:

‘The elements (points, lines, planes) of geometwystitute a system of things which
cannot be extended while maintaining simultaneotisty cited axioms, i.e., it is not
possible to add to this system of points, linesl planes another system of things such
that the system arising from this addition satssé&ioms Al-V1.’

Axioms of this sort, which ascribe to the objecfsano axiomatic theory a maximal
property — in that they assert that there is hoentemprehensive system of things that
satisfies a given series of axioms — we call a makiaxiom. The same axiomatic role
as that of maximal axiom is played in other axigyatems by minimal axioms which
ascribe a minimality property to the objects of thiscipline. Maximal and minimal
axioms we call collectively extremal axioms [5, pB-69].

Besides Hilbert's axiom of completeness in geomégiryich was an axiom of maximality) Carnap
and Bachmann considered two axioms of minimalite induction axiom in arithmetic and
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Fraenkel’s axiom of restriction in set theory. Thager says, roughly speaking, that only these sets
exist whose existence can be proved in set theorg fience the universe of all sets should be as
narrow as possible). Extremal axioms were constlese Carnap and Bachmann as expressing a
kind of completeness of models and hence as caedidiar conditions characterizing models in a
unique way. The famous limitative theorems provatkerl in the 20th century showed the
possibilities and restrictions in this respect.

Early Carnap’s views on extremal axioms and metalage best described in several papers
written by Georg Schiemer (see for instance [24}).book [19] presents logical, mathematical and
cognitive aspects of extremal axioms. In particulgsropose to extend the inventory of extremal
axioms by taking into account Kurt Godel's axiomcohtructibility, John von Neumann’s axiom of
the limitation of size and Roman Suszko’s axiontamonicity (these are examples of restriction
axioms in set theory, hence axioms of minimalitg) veell as axioms of the existence of large
cardinals in set theory (which are axioms of madityla | also mention an interesting example of a
maximality axiom in algebra, namely a generalizaidd Dedekind’s axiom of continuity proposed
by Philip Ehrlich and used by him to prove categtyi results concerning certain non-
Archimedean structures.

Hilbert's axiom of completeness in geometry presénn [13] was later replaced by the
axiom of continuity for real numbers which resultadhong others, in the proof of categoricity of
the system of Euclidean geometry (see for exam®]e Becond-order axiom of induction in
arithmetic is used in the proof that there exis@cdy one (up to isomorphism) Peano algebra. On
the other hand, first-order Peano arithmetic idi@am being semantically complete (and hence also
categorical).

It is interesting that mathematicians have chantped views on extremal axioms in set
theory. The axioms of restriction were abandonedicivwas most explicitly shown in [10]. Set
theoreticians are recently eager to investigaters¢é\axioms of the existence of large cardinals
which presuppose that the universe of all setsldhioe as large as possible. Kurt Godel himself
opted for this trend and Ernst Zermelo proposeddrept the existence of the whole transfinite
hierarchy of strongly inaccessible numbers alreadyis second axiomatization of set theory
presented in [26].

4. Jan Wolenski on Intended and Standard Models

Jan Wol@ski devoted several works to metatheoretical amalgé formalized theories. In my
opinion, most interesting are his proposals invajviapplications of concepts elaborated in
metalogic to the analysis in question. It is justfto claim that Jan Walski achieved perfection
in this work. He may doubtlessly be consideredi¢aeing continuator of the famous Warsaw-Lviv
school.

We shall analyze in brief Waieki’'s views on intended and standard models. Ounma
source is his book on epistemology [25]. Many Polghilosophers wrote on intended models
(notably Marian Przetki, Adam Nowaczyk, Ryszard Wojcicki, and Adam Qesp but their
analysis was focused mainly on intended modelsrgdiecal theories. Jan Walski’s reflections,
in turn, are devoted mainly to intended and stashdaodels of mathematical theories which is also
the main issue discussed in this note.

Jan Woléski influenced my own views on intended and statidaodels mainly with
respect to the opinion that these models are disished not on purely syntactic or semantic
criteria but rather by taking into account alsotaer pragmatic factors. There may be small
differences between his understanding of the distin between intended and standard models and
the one presented at the beginning of this notethigy are negligible.

Wolenski recalls the construction of the tree of extensiof first-order Peano arithmetic PA
([25], 256; [18], 161). Le=PA and lety, be any undecidable statemenfTga We put:Too= PA
+ wo andTp; = PA+ =y For any finite 0-1 sequenedet: T,o = T, + w, andT,1 = T, + —y,,
wherey, is any undecidable sentence ©f (for anyT, there exists such an undecidable sentence).
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We obtain in this way the full binary tree of exdeams of PA. This tree has continuum many
branches. It follows from the compactness theorea the union of theories from each branch is
consistent (under the assumption of consistencyP8) and hence each such union has a model.
Further, due to the downward Léwenheim-Skolem teoeach such union has a countable model.
No two such models are elementarily equivalent wiiatlows from the construction of the above
tree. Consequently, no two such models are isonmrph

Let yo be identical withCon(PA) (that is, the sentence expressing the fact thatidPA
consistent) and lat, express the consistency B©f. Then the model of the leftmost branch of the
above tree is isomorphic to the standard model Af Al other branches have countable non-
standard models. Each sentence of the fef@on(T,) has the Gédel number which is a non-
standard natural number in the respective moddl.usenote on the margins that PA isvdd
theory: it has, in each infinite power the maximum possible number of models, thaf‘is
(provided the consistency of PA, of course).

The standard countable model of PA can be distsigaad out of the totality of countable
models of this theory only using some metatheaxktresults, as already mentioned above.
However, Jan Woleski proposes a more deep and subtle analysis sfishue. We need some
auxiliary tools to present his views here:

A theory T is descriptively completdin short: o-completg with respect to a sequence
(as)ses Of individual constants (whefis any index set), if for any formulgx) of the language of
T with one free variabl& the following implication holds: i§(x/as) is a theorem of for all s € S,
then alsovxg(x) is a theorem of. If the sequence of individual constants in quests countable,
then we say that T i,-complete

A theoryT is constructivewith respect to a sequence of ter(s),cs, if for any formula
¢(X) of the language of with one free variabla the following implication holds: if3xe(x) is a
theorem ofT, theng(x/ts) is a theorem of for somes € S.

A theoryT is o-consistentvith respect to a sequence of ter(ng),cs, if for any formula
¢(X) of the language of with one free variabla the following implication holds: ifp(x/t) is a
theorem of T for alk € S, then3ax—¢@(x) is not a theorem oF. If the sequence of terms in question
is countable, then we say thiats w-consistentlf a theoryT is notw-consistent, then we say that
IS w-inconsistent

By the w-rule we understand a rule of inference with an infinget of premisses
©(0), (1), 9(2), ... and the conclusio¥xe(x).

These notions are related to the possibility obaissing names with the elements of the
domain of a modelw-consistency was used already by Kurt Gédel inftheulation of his first
incompleteness theorem. Descriptive completenesk amstructivity were used by Andrzej
Grzegorczyk in his famous paper on categoricity].[12 the language of our theory contains
numerals, then we can talk in this language abpetiBc natural numbers. There arises a question
of how these properties can be used in the chaizatien of models of a theory.

For any modeM let Th(M) denote théheory ofM, that is the set of all sentences trudin
Let No denote the standard model of PN; the non-standard model obtained by using the
compactness argument in the way described abovéNartie non-standard model of the theory
PA+ -Con(PA)obtained from the tree of expansions of PA preskrarlier. The s@th(Ny) is thus
the set of all arithmetical truths, that is truateaces about standard natural numbers. We recall
that PA is incomplete and essentially undecidabbles not finitely axiomatizable. If we add the
infinitary o-rule to PA, then the enriched theory becomes cetapbut the price for that is very
high, because we admit infinitary proofs, whicloisourse a debatable decision.

Jan Wol@ski uses an original generalization of the tradiiosquare of oppositions for a
formal representation of the logical dependencietswben the notions of consistency,
inconsistencygp-consistency, an@d-inconsistency. It should be noted that these gdizations (see
[24]) appeared to be a very productive and effectool of logical analysis as shown by Widki
in his numerous articles on analytical philosopie are interested here mainly in possibilities of
applying the notions in question to the characéion of intended and standard models.
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All axioms and theorems of PA are true in the maddlgl However, the sentenee€Con(PA)
is also true ifNj,. The Godel number of this sentence cannot beraatd natural number because
otherwise PA would prove its own inconsistency, tcamy to what was assumed. The sentence
-Con(PA) is obviously false in the standard modi&l and Woléski writes that it is difficult to
express its sense in the language appropriateafking aboutNy. If we are looking for formal
criteria of being the standard model of arithmetien a good candidate could be the well-ordering
property of the set of natural numbers. Wisla shares this opinion with Haim Gaifman (see J11]

The set Th(No) of all standard arithmetical truths is-consistent, ®-complete and
constructive with respect to the sequence of athenals. Woléski argues that o-consistency and
constructivity are too strong conditions for theuccterization of an arbitrary set of true sentsnce
For example, the séth(Ni,) is consistent bub-inconsistent. It cannot be constructive, because
consistency and constructivity imply-consistency. Further, Walski adds that it is possible to
consider the sefh(N.) as o-consistent and constructive with respectdaitably chosen sequence
of constants. Themh(N) is also o-complete. Walski concludes from this that consistency (even
maximal consistency) and o-completeness are mirsgrahctic conditions characterizing the set of
sentences true in any model and that the existehtteeories which are consistent but at the same
time w-inconsistent clearly shows that truth differs esisdly from provability. The semantic
theory of truth alone is unable to distinguish skendard model in the class of all models.

Wolenski says a few words explicating the commonly ata@@ssumption that PA is (a
formal representation) of the True Arithmetic. Frtme point of view of a mathematician this could
mean that the True Arithmetic is simply the totabf all logical consequences of the axioms of PA,
even if not all of them have real applications. fkmev position (taken by a logician, according to
Wolenski) could accept the sefh(Np) as the True Arithmetic, thus identifying it withl a
arithmetical truths. Non-standard models of arithcnean nevertheless be fundamental in certain
mathematical disciplines — a notable example ipeerreal field which has become recently more
and more important in mathematical analysis.

Wolenski expresses a few interesting remarks concerthegways of formalization of
arithmetic. The class of models isomorphidpcan be characterized in second-order logic ard thi
fact is considered a virtue of such formalizati@irst of all by the professional mathematicians.
However, second-order arithmetic is undecidable iandmplete. The great expressive power of
second-order logic is related to the acceptant¢keofbsolute notion of a set. The expressive power
of a logic is inversely proportional to its dedwetipower. Jan Woreski explicitly opts for first-
order formalization, which possesses a lot of ‘gatatiuctive properties and adds that this choice
does not have any influence on the criteria ofddiatiness of models.

The monograph [25] contains a very detailed anslggithe notion of aanalytic sentence
One type of such sentences is relevant to standadkls. Woléski proposes to call a sentenge
analytical in the pragmatic sensk there exists a theory such thaty is a theorem of andy is
true in the intended model @t From the formal (logical) point of view standartbdels are as
good as non-standard ones. It is our epistemicibecto call a model standard. We have argued in
the first part of this note that this decision istafmined by reflecting on the properties of the
intended model, a structure investigated prioheogmergence of the formal (axiomatic) theory.

The monograph in question contains also a critigu®utnam’s arguments expressed in
[20]. Jan Woléski shows that Putnam is wrong claiming that modmie nothing else but
constructions inside theories. Putnam assumeswvinaéfer to models (in particular to the intended
model) always using the tools of the correspondiepry. This is clearly false, writes Wakki,
because we must refer to metatheory when distihgngsbetween models. This is obvious for
instance in the explication of Skolem's paradoxha context of models of the theory of real
numbers. We switch to metatheory asserting thaptbper (adequate) model of this theory has a
power of continuum. The impossibility of definitioof models in the object language, which
follows from metalogical results, is discussed iorendetail in [23].
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5. Concluding Remarks

The main goal of this note was to present Jan Yé&lés views on intended and standard models of
mathematical theories. His contribution to thisuessis based on an original application of
metalogical results to philosophical problems. Quram hardly find in philosophical literature
examples of formal analysis comparable in depth sardlety to those provided by Jan Widki.

My own distinction between intended and standardlet®owas influenced by his proposals. In a
sense, the distinction in question slightly resaslthe distinction between the intuitive notioraof
computable function and any precise mathematigalesentation of computability (for instance
recursive functions or Turing machines).

Wolenski’'s remarks are related first of all to modelsaothmetic and to a lesser extent to
geometric continuum and set theory. Taking intooaat the history of mathematics on a large
timeline it seems legitimate to say that the inezhdhodel of arithmetic is much better understood
than the continuum. The long philosophical debéteuathe structure of a continuum is still vivid
and far from ultimate conclusions. The most commadcepted representation of the geometric
continuum by the arithmetical continuum of real fmems competes with the quite new
representation based on hyperreal numbers. Onalsarfind the opinion that the continuum should
not be considered as a set of points, though nbdegkloped mathematically correct alternative is
in sight at the present moment. This situation m@ympt us to the conclusion that mathematicians
have described several aspects of the continuunmdozg not capturethe intended model of the
continuum yet. A very interesting recent reviewopinions on the structure of the continuum can
be found in [2]. The discussion concerning modélseb theory is also far from being closed as is
clearly visible from the research directed towangsv axioms which could characterize the set-
theoretical universe in a more unique way.
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