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Abstract:  
Two crucial concepts of the methodology and philosophy of mathematics 
are considered: proof and truth. We distinguish between informal proofs 
constructed by mathematicians in their research practice and formal 
proofs as defined in the foundations  of mathematics (in 
metamathematics). Their role, features and interconnections are 
discussed. They are confronted with the concept of truth in mathematics. 
Relations between proofs and truth are analysed.  
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1. Introduction 
 
Concepts of proof and truth play an important role in  metamathematics, especially in the 
methodology and the foundations of mathematics. Proofs  form the main method of justifying 
mathematical statements. Only statements that have been proved are treated as belonging to 
the corpus of mathematical knowledge. Proofs are used to convince the readers of the truth of 
presented theorems. But what is a proof? What does it mean in mathematics that a given 
statement is true? What is truth (in mathematics)?  
   In mathematical research practice proof is a sequence of arguments that should 
demonstrate the truth of the claim. Of course, particular arguments used in a proof depend on 
the situation, on the audience, on the type of a claim, etc. Hence the concept of  proof has in 
fact a cultural, psychological and historical character. In practice mathematicians generally 
agree on whether a given argumentation is a proof. More difficult is the task of defining a 
proof as such. Beside the concept of proof used in research practice there is a concept of proof 
developed by logic. What are the relations between those two concepts? What roles do they 
play in mathematics? 
   On the other hand the concept of truth belongs to the fundamental concepts that have 
been considered in epistemology since ancient Greece.1 There were many attempts to define 
this vague concept. The classical definition (attribued to Aristotle) says that a statement is true 
if and only if it agrees with the reality, or – as Thomas Aquinas put it: “Veritas est adequatio 
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intellectus et rei, secundum quod intellectus dicit esse quad est vel non esse quod non est” (De 
veritate, 1, 2).  
   But what does it mean that a mathematical statement (for example: “2 + 2 = 4”) agrees 
with the reality? With what reality? One can answer: “With mathematical reality?” But what 
is mathematical reality? And we come here to one of the fundamental problems of the 
ontology of mathematics: where and how do mathematical objects exist? Is the mathematical 
universe a reality or an artifact?  

 
2. Proof in Mathematics: Formal vs Informal 

 
Mathematics was and still is developed in an informal way using intuition and heuristic 
reasonings – it is still developed in fact in the spirit of Euclid  (or sometimes of Archimedes) 
in a quasi-axiomatic way. Moreover, informal reasonings appear not only in the context of 
discovery but also in the context of justification. Any correct methods are allowed to justify 
statements. Which methods are correct is decided in practice by the community of 
mathematicians. The ultimate aim of mathematics is “to provide correct proofs of true 
theorems” [2, p. 105]. In their research practice mathematicians usually do not distinguish 
concepts “true” and “provable” and often replace them by each other. Mathematicians used to 
say that a given theorem holds or that it is true and not that it is provable in such and such 
theory. It should be added that axioms of theories being developed are not always precisely 
formulated and admissible methods are not precisely described.2 

Informal proofs used in mathematical research practice play various roles. One can 
distinguish among others the following roles (cf. [4], [7]): 

(1) verification, 
(2) explanation, 
(3) systematization, 
(4) discovery, 
(5) intellectual challenge, 
(6) communication, 
(7) justification of definitions. 

The most important and familiar to mathematicians is the first role. In fact only verified 
statements can be accepted. On the other hand a proof should not only provide a verification 
of a theorem but it should also explain why does it hold. Therefore mathematicians are often 
not satisfied by a given proof but are looking for new proofs which would have more 
explanatory power. Note that a proof that verifies a theorem does not have to explain why it 
holds. It is also worth distinguishing  between proofs that convince and proofs that explain. 
The former should show that a statement holds or is true and can be accepted, the latter – why 
it is so. Of course there are proofs that both convince and explain. The explanatory proof 
should give an insight in the matter whereas the convincing one should be concise or general. 
Another distinction that can be made is the distinction between explanation and 
understanding. In the research practice of mathematicians simplicity is often treated as a 
characteristic feature of understanding. Therefore, as G.-C. Rota writes: “[i]t is an article of 
faith among mathematicians that after a new theorem is discovered, other, simpler proof of it 
will be given until a definitive proof is found” [23, p. 192].  

It is also worth quoting in this context Aschbacher who wrote:   
 

The first proof of a theorem is usually relatively complicated and unpleasant. But 
if the result is sufficiently important, new approaches replace and refine the 
original proof, usually by embedding it in a more sophisticated conceptual 
context, until the theorem eventually comes to be viewed as an obvious corollary 
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of a larger theoretical construct. Thus proofs are a means for establishing what is 
real and what is not, but also a vehicle for arriving at a deeper understanding of 
mathematical reality [1, p. 2403].  

 
As indicated above a concept of a “normal” proof used by mathematicians in their research 
practice (we called it “informal” proofs) is in fact vague and not precise. In the 19th century 
there appeared a new trend in the philosophy of mathematics and in the foundations of it 
whose aim was the clarification of basic mathematical concepts, especially those of analysis 
(cf. works by Cauchy, Weierstrass, Bolzano, Dedekind). One of the drivers of this trend was 
the discovery of  antinomies in set theory (due among others to C. Burali-Forte, G. Cantor, B. 
Russell) and of semantical antinomies (among others by G. D. Berry and K. Grelling). All 
those facts forced the revision of fundametal concepts of metamathematics.  
 One of the formulated proposals  was the programme of David Hilbert and the 
formalism based on it. Hilbert’s main aim was to justify mathematics developed so far, in 
particular to show that mathematics using the concept of an actual infinity is consistent and 
secure. To achieve this aim Hilbert proposed to develop a new theory called proof theory 
(Beweistheorie). It should be a study of proofs in mathematics – however not of real proofs 
constructed by mathematicians but of formal proofs. The latter played a fundamental role in 
Hilbert’s programme. Hilbert proposed to formalize all theories of the entirety of mathematics 
and to prove the consistency of them. Note that he did not want to replace the mathematics 
developed by mathematicians by formalized theories – the formalization was for him only a 
methodological tool that should enable the study of theories as such.  
 To formalize a theory one should first fix a symbolic formal language with formal 
rules of constructing formulas in it, then fix appropriate axioms expressed in this language as 
well as accepted rules of inference which again should have an entirely formal and syntactic 
character. A proof (exactly: formal proof) of a formula φ in such a theory is now a sequence 
of formulas φ1, φ2, … , φn  such that the last member of the sequence is the formula φ and all 
members of it either belong to the set of presumed axioms or are consequences of previous 
members of the sequence according to one of the accepted rules of inference. Observe that 
this concept of a formal proof has a syntactic character and does not refer to any semantical 
notions such as meaning or interpretation. 
 Note that formalization is connected also with the idea of mathematical rigor. 
Detlefsen [6, p. viii] writes: 
 

[W]ith the vigorous development of techniques of formalization that has taken 
place in this [i.e., 20th century – my remark, R.M.] century, demands for rigor 
have increased to a point where it is now the reigning orthodoxy to require that, to 
be genuine, a proof must be formalizable. This emphasis on formalization is based 
on the belief that the only kinds of inferences ultimately to be admitted into 
mathematical reasoning are logical inferences [. . .]. 

 
Comparing the usual proofs of mathematical research practice (informal proofs) and formal 
proofs one can see that both types of proofs consist of steps of deduction. They differ by the 
properties of those steps. According to Hamami [10] one can distinguish here three types of 
differences: formality, generality and mechanicality. Informal inferences are meaning 
dependent, matter dependent and content dependent wheras formal inferences are meaning, 
matter and content independent. Hamami [10, p. 679] writes: “To say that logical inference is 
formal is to say that it is governed by rules of inference which only depend on the logical 
form of premisses and conclusion, and not on their meaning, matter, or content.” 
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Tarski [25, p. 187] said: “[T]he relation of following logically is completely 
independent of the sense of the extra-logical constants occurring in the sentences among 
which this relation obtains […].” 
 Informal inferences are non-general wheras formal ones  are general. This means in 
particular that the former are topic-specific, subject matter dependent and domain dependent, 
and the latter are topic-neutral, subject matter and domain independent. Detlefsen [5, p. 350] 
wrote in connection with this: 
 

The mathematician’s inferences stem from and reflect a knowledge of the local 
“architecture” (Poincaré’s term) of the particular subject with which they are 
concerned, while those of the logician represent only a globally valid, topic-
neutral (and, therefore, locally insensitive!) form of knowledge. 

 
Hamimi [10] explains that the claim that logical inference is general means in particular that 
“it is governed by rules of inference that are generally applicable, i.e., that are applicable to 
propositions – premisses and conclusions – belonging to any and every topic, subject matter, 
or domain” [10, pp. 684-685]. 
 The last difference between informal and formal proofs distinguished by Hamimi is 
the property of mechanicality: informal ones are non-mechanical and formal ones – 
mechanical. What does it mean is explained by the following quotations. Kreisel [16, p. 21] 
writes: 
 

Mathematical reasoning, except in the ‘limiting’ case of numerical computations, 
does not present itself to us as the execution of mechanical rules [. . .] The 
connection between reliability and the possibility of mechanical checking is 
usually, and somewhat uncritically, taken for granted. 

 
And Hamimi [10, p. 695] says: “To say that logical inference is mechanical is to say that it is 
governed by rules of inference  that are mechanical.” 

One can distinguish here two senses in which logical rules of inference are 
mechanical: mechanical applicability and mechanical checkability. 
 Add at the end of this section that the concept of a formal proof enables us to study 
mathematical theories as theories, to investigate their properties, etc. It makes possible the 
entirety of metamathematics. However, the following question arises: what are the relations 
between formal and informal proofs. Recall that the first one is a practical notion of a 
semantical character, not having a precise definition. The latter is a theoretical concept of a 
syntactical character used in logical studies. Mathematicians are usually convinced that  every 
“normal”, i.e., informal mathematical proof can be transformed into a formalized one, 
however  there are  no general rules describing how this can and should be done. This thesis is 
sometimes called Hilbert’s thesis. Barwise [3] wrote:3 “[T]he informal notion of provable 
used in mathematics is made precise by the formal notion provable in first-order logic. 
Following a sug[g]estion of Martin Davis, we refer to this view as Hilbert’s Thesis.”   

In fact a formalization of an informal proof requires often some original and not so 
obvious ideas.   
 
3. Truth in Mathematics 
 
We indicated above that “normal” mathematicians (i.e., mathematicians not being logicians or 
specialists in the foundations of mathematics) do not distinguish in their research practice 
between provability (in the broad sense) and truth. Moreover, those two concepts are usually 



14 
 

identified in practice. This was done also by formalists.4 Gödel wrote in a letter of 7th March 
1968 to Hao Wang [cf. 29, p. 10]: “[...] formalists considered formal demonstrability to be an 
analysis of the concept of mathematical truth and, therefore were of course not in a position to 
distinguish the two.” 

Note that “mathematical truth” should be understood here in an intuitive way. 
Moreover, the informal concept of truth was not commonly accepted as a definite 
mathematical notion in Hilbert’s and Gödel’s time. There was also no definite distinction 
between syntax and semantics. This explains also, in some sense, why Hilbert preferred to 
deal in his metamathematics solely with forms of formulas, using only finitary reasonings 
which were considered to be secure – contrary to semantical reasonings which were non-
finitary (sometimes called: infinitary) and consequently not secure.  
 The precise definition of truth was given by Tarski in his famous paper Pojęcie 
prawdy w językach nauk dedukcyjnych [24]. Referring to the classical Aristotle’s  definition 
he attempted to make more precise the concept of truth with respect to formalized languages. 
In such languages “the sense  of every expression is unambiguously determined by its form” 
[27, p. 186].  

Tarski defined the concept of truth by using the concept of satisfaction, more exactly, 
satisfaction of a formula on a valuation by a given interpretation of primitive notions of the 
considered language, hence in a given structure. His definition refers to the so called 
convention (T) according to which the statement “Snow is white” is true if and only if snow is 
white. In fact Tarski did not give a definition of truth but defined only the class of true 
sentences (of  a given language).  

Tarski’s definition has an infinitary character – the infinity appears in the reference to 
infinite sequences of elements of the considered structure (valuations) as well as in the case of 
satisfaction of formulas with quantifiers. It does not go beyond the extensional adequacy and 
does not explain the essence of the truth and of being true. It relativizes also the concept of 
truth to a given structure or domain. 

In the above mentioned paper [24] Tarski formulated also the theorem on the 
undefinability of truth. It says that the conccept of truth for given formalized language cannot 
be definied in this language itself – to do this more powerful means are necessary. In other 
words: the set of sentences true in a given structure is not definable in it (though in some 
cases  it is definable with parameters). Tarski formulated this theorem as Theorem I, point (β) 
[cf. 26, p. 247]:5 “[A]ssuming that the class of all provable sentences of the metatheory is 
consistent, it is impossible to construct an adequate definition of truth in the sense of 
convention T on the basis of the metatheory.” 
 One of the consequences of Tarski’s theorem is the fact that in order to construct truth 
theory, for example, for the language of the arithmetic of natural numbers (hence a theory of 
finite entities) one should apply more powerful means, in fact the infinity. In other words: the 
concept of an arithmetical truth is not arithmetically definable. Generally: semantics needs the 
infinity! It indicates also the gap between the syntactical concept of a (formal) proof  and 
(formal) provability on the one side and the concept of truth. In fact, for example, the set of 
true arithmetical sentences is not definable in the language of arithmetics whereas the set of 
provable sentences (theorems) of arithmetic is arithmetically definable, even more: it is 
definable by a simple formula (more exactly: by a formula with one existential quantifier and 
logical connectives as well as eventually bounded quantifiers). Hence one can say that the 
concept of truth transcends all syntactical means.  
 The indicated difference between the (definablity of the concept of) provability and 
(the undefinability of the concept of) truth was the key reason for the famous incompleteness 
theorems proved by Gödel [8]. Gödel wrote on his discovery in a draft reply to a letter dated 
27th May 1970 from Yossef Balas, then a student at the University of Northern Iowa [30, pp. 
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84-85] and indicated there that it was precisely his recognition of the contrast between the 
formal definability of provability and the formal undefinability of truth that led him to his 
discovery of incompleteness. The first incompleteness theorem implies that in every 
consistent theory containing the arithmetic of natural numbers there are undecidable (i.e. that 
can neither be proved nor disproved) statements φ such that one formula of the pair φ and 
non-φ is satisfied/true in the intended (standard) model of the theory. It shows that (formal) 
provability is not the same as truth! However both these concepts are connected by the 
completeness theorem stating that a statement φ is a theorem of a theory T if and only if φ is 
true in every model of T. And theories usually possess (infinitely) many various models – not 
only the intended one (called: standard). So we have that:  
 
1. if a formula φ is provable in the theory T then it is true in every model of T, hence also in 
the intended model of T, 
2. it is not true that for any formula φ: if  φ is true in the intended (standard) model of T then 
it is provable in T. 
 
Add that when “normal” mathematicians are saying that a given sentence φ is true then they 
have in mind that it is true in the intended (standard) model.  
 One should mention also another phenomenon. As indicated above the concept of 
truth/true sentence for a given language L is not definable in the language L itself. However 
partial concepts of truth for formulas of L are definable in L. More exactly: if one considers 
only formulas of L with a given maximal number of quantifiers (this is in fact a restiction of 
the complexity of a formula) then the concepts of satisfaction and truth for such formulas of a 
language L are definable in L. It can be proved that the definition of  the satisfaction predicate 
for formulas with maximally k quantifiers is a formula with k quantifiers, i.e., a formula of the 
same degree of complexity. Details can be found in our monograph [18].   
 The concept of truth/true formula can be investigated also by mathematical, more 
exactly: by axiomatic-deductive methods. Conditions formulated in Tarski’s definition of 
truth can be treated as axioms characterizing the predicate of being satisfied and true. Such  an 
approach has been studied in detail for the case of arithmetic of natural numbers – cf. for 
example [17] and [21].  
 Results obtained by described investigations show that not for every model of 
arithmetic one can define a concept of satisfaction and truth on it having natural properties 
assumed and required by Tarski’s definition. A necessary condition is here the property that 
the model should be recursively saturated.6 Additional properties of a model must be assumed 
if one requires that  the concept of truth upon a given model have some useful (and natural) 
properties like being full (i.e., deciding the truth of every formula on any valuation) or being 
inductive (this property means that the induction principle holds not only with respect to 
formulas of the language of arithmetic but also for an extended language augmented by the 
satisfaction/truth predicate).  
 It also turns out that if a concept of satisfaction and truth (called a satisfaction class7) 
for a given structure can be defined then it can be done in many mutually inconsistent ways, 
i.e., if there exists a satisfaction class on the model then there exist many such satisfaction 
classes. This shows that  the axiomatic characterization of the concept of satisfaction and truth 
based on Tarski’s definition is not complete and unique, that Tarski’s conditions (treated as 
axioms) are too weak. This phenomenon can be removed by allowing more powerful – for 
example set-theoretical – means. All this shows the complexity of the concept of truth.  
 We indicated above the gap between provability and syntactical concepts on the one 
hand and satisfaction/truth and semantical concepts on the other. However it turns out that  
the concept of truth can be (in a certain sense) replaced by the concept of consistency (hence: 
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a syntactical concept) in the so called ω-logic (it is a generalization of the usual classical logic 
obtained by admitting the so called ω-rule and reasonings of infinite length) and by the 
transfinite induction.8 This confirms the thesis that semantical concepts such as satisfaction 
and truth require infinitary means. Such concepts can be expressed or replaced by richer 
syntactical ones, however, this requires the resignation from the requirement of being finitary, 
in particular from the natural requirement that a proof must have a finite length and can refer 
only to finitely many assumptions.  
 
4. Conclusion 
 
In research practice mathematicians do not fix and do  not restrict allowed methods of proof – 
any correct method is practically allowed. A mathematician wants to know what properties 
the considered and investigated structure (intended structure/model, standard structure/model) 
has or whether a particular property is true/holds in this structure. She/he is not interested in 
the problem of whether this property can be deduced from a certain given and restricted set of 
axioms. Therefore, for example, a specialist in number theory who investigates the structure 
of the natural numbers (i.e., the structure (N, S, +, ⋅, 0) where N is the set {0, 1, 2, 3, …}, S 
denotes the successor function, + and ⋅ denote, resp., addition and multiplication of natural 
numebrs and 0 denotes the distinguished element called “zero“) is not working in the 
framework of a fixed axiomatized formal system of arithmetic but is using any correct 
mathematical methods in order to decide whether a considered property is true/holds in the 
investigated structure (in the intended, standard model of arithmetic of natural numbers). 
Consequently she/he does not hesitate to use even methods of complex analysis (as is done in 
the analytic numer theory) if only they can be useful in deciding the considered problem. 

The informal and vague concept of  proof used by mathematicians in their research 
practice can be made precise by the concept of  formal proof. The latter makes possible exact 
metamathematical investigations of mathematical theories – more exactly of their formal 
counterparts (and not of real theories considered by “normal” mathematicians). However the 
formal concept of  proof (with precisely described and restricted rules of inference) as well as 
the very concept of  formalized theory based on it have some limitations indicated by Gödel’s 
incompleteness theorems. On the other hand the precise concept of satisfaction and truth 
relativizes truth to a given structure/interpretation. The concept of  formal proof is adequate 
with respect to all models of a considered theory (as the completeness theorem states) and not 
only to the truth in the intended/standard structure. All this implies that metamathematical 
studies of proofs, structures, theorems and theories are not exact counterparts of what 
mathematicians are really doing in their research practice, they are in fact idealizations of the 
real practice.  
 Let us finish our considerations by quating Alfred Tarski who in the paper “Truth and 
proof” wrote: 
 

Proof is still the only method used to ascertain the truth of sentences within any 
specific mathematical theory. […] The notion of a true sentence functions thus as 
an ideal limit which can never be reached but which we try to approximate by 
gradually widening the set of provable sentences. […] There is no conflict 
between the notions of truth and proof in the development of mathematics; the 
two notions are not at war but live in peaceful coexistence [27, p. 77]. 
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Notes 
                                                 
1. For the development of the concept of truth see Woleński [31] 
2. For more on proofs in mathematics and their role see, for example, Murawski [22]. 
3. Cf. Kahle [11]. 
4. For the development of the process of distinguishing concepts of provability and truth see, 
for example, Murawski [19] and [20]. 
5. Add that in the footnote Tarski explicitly states that his proof of this theorem uses Gödel’s 
method of arithemtization of syntax and his method of diagonalization, however he stresses 
that he obtained his result independently.  
6. For definition see for example Kaye [12]. 
7. The concept of a satisfaction class was introduced in Krajewski [15] and studied among 
others by Roman Kossak, Henryk Kotlarski, Stanisław Krajewski, Alistair Lachlan, Roman 
Murawski, Zygmunt Ratajczyk. 
8. Cf. Kotlarski and Ratajczyk [13] as well as [14]. 


