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Abstract

Two crucial concepts dhe methodology and philosophy of mathematics
are considered: proof and truth. We distinguistwbet informal proofs
constructed by mathematicians in their researclttioea and formal
proofs as defined in the foundations of mathemati@n
metamathematics). Their role, features and interections are
discussed. They are confronted with the conceptutth in mathematics.
Relations between proofs and truth are analysed.

Keywords formal proof, informal proof, truth, mathematickgic,
incompleteness, Jan Wakki.

1. Introduction

Concepts of proof and truth play an important riole metamathematics, especially in the
methodology and the foundations of mathematicsoBrdorm the main method of justifying
mathematical statements. Only statements that hege proved are treated as belonging to
the corpus of mathematical knowledge. Proofs aeel s convince the readers of the truth of
presented theorems. But what is a proof? What doegan in mathematics that a given
statement is true? What is truth (in mathematics)?

In mathematical research practice proof is ausege of arguments that should
demonstrate the truth of the claim. Of course,ipadr arguments used in a proof depend on
the situation, on the audience, on the type ofamletc. Hence the concept of proof has in
fact a cultural, psychological and historical cltéea In practice mathematicians generally
agree on whether a given argumentation is a pidofe difficult is the task of defining a
proof as such. Beside the concept of proof usedsearch practice there is a concept of proof
developed by logic. What are the relations betwtbese two concepts? What roles do they
play in mathematics?

On the other hand the concept of truth belooghé fundamental concepts that have
been considered in epistemology since ancient ®re€here were many attempts to define
this vague concept. The classical definition (atteid to Aristotle) says that a statement is true
if and only if it agrees with the reality, or — @Bomas Aquinas put it: “Veritas est adequatio
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intellectus et rei, secundum quod intellectus disge quad est vel non esse quod non Bst” (
veritate 1, 2).

But what does it mean that a mathematical stameifior example: “2 + 2 = 4”) agrees
with the reality? With what reality? One can answ&/ith mathematical reality?” But what
is mathematical reality? And we come here to ondhef fundamental problems of the
ontology of mathematics: where and how do mathemalatibjects exist? Is the mathematical
universe a reality or an artifact?

2. Proof in Mathematics: Formal vsInformal

Mathematics was and still is developed in an infariway using intuition and heuristic
reasonings — it is still developed in fact in tipéris of Euclid (or sometimes of Archimedes)
in a quastaxiomatic way. Moreover, informal reasonings appeat only in the context of
discovery but also in the context of justificatidkny correct methods are allowed to justify
statements. Which methods are correct is decidedoractice by the community of
mathematicians. The ultimate aim of mathematicstas provide correct proofs of true
theorems” [2, p. 105]. In their research practicathematicians usually do not distinguish
concepts “true” and “provable” and often replacenthby each other. Mathematicians used to
say that a given theorem holds or that it is tra@ aot that it is provable in such and such
theory. It should be added that axioms of thedbieisg developed are not always precisely
formulated and admissible methods are not precigesgribed.

Informal proofs used in mathematical research pragblay various roles. One can
distinguish among others the following roles (di, [7]):

(1) verification,

(2) explanation,

(3) systematization,

(4) discovery,

(5) intellectual challenge,

(6) communication,

(7) justification of definitions.
The most important and familiar to mathematiciamghe first role. In fact only verified
statements can be accepted. On the other handagtrould not only provide a verification
of a theorem but it should also explain why dodwoitl. Therefore mathematicians are often
not satisfied by a given proof but are looking feew proofs which would have more
explanatory power. Note that a proof that verifeeheorem does not have to explain why it
holds. It is also worth distinguishing betweengisothat convince and proofs that explain.
The former should show that a statement holds tuesand can be accepted, the latter — why
it is so. Of course there are proofs that both swesand explain. The explanatory proof
should give an insight in the matter whereas thevioeing one should be concise or general.
Another distinction that can be made is the disiomc between explanation and
understanding. In the research practice of matheraas simplicity is often treated as a
characteristic feature of understanding. Therefase(s.-C. Rota writes: “[i]t is an article of
faith among mathematicians that after a new theasediscovered, other, simpler proof of it
will be given until a definitive proof is found” & p. 192].

It is also worth quoting in this context Aschbacthio wrote:

The first proof of a theorem is usually relativelymplicated and unpleasant. But
if the result is sufficiently important, new appcbas replace and refine the
original proof, usually by embedding it in a morepkisticated conceptual
context, until the theorem eventually comes to iesved as an obvious corollary

11



of a larger theoretical construct. Thus proofsaraeans for establishing what is
real and what is not, but also a vehicle for angvat a deeper understanding of
mathematical reality [1, p. 2403].

As indicated above a concept of a “normal” prooddiby mathematicians in their research
practice (we called it “informal” proofs) is in fagague and not precise. In the 19th century
there appeared a new trend in the philosophy ohemaatics and in the foundations of it
whose aim was the clarification of basic mathenahttoncepts, especially those of analysis
(cf. works by Cauchy, Weierstrass, Bolzano, Ded#ki®ne of the drivers of this trend was
the discovery of antinomies in set theory (due agnathers to C. Burali-Forte, G. Cantor, B.
Russell) and of semantical antinomies (among othgrs. D. Berry and K. Grelling). All
those facts forced the revision of fundametal cpteef metamathematics.

One of the formulated proposals was the progranom®avid Hilbert and the
formalism based on it. Hilbert's main aim was tatjty mathematics developed so far, in
particular to show that mathematics using the cpinoé an actual infinity is consistent and
secure. To achieve this aim Hilbert proposed toettgwv a new theory called proof theory
(Beweistheorig It should be a study of proofs in mathematidsowever not of real proofs
constructed by mathematicians but of formal prodfse latter played a fundamental role in
Hilbert's programme. Hilbert proposed to formalaktheories of the entirety of mathematics
and to prove the consistency of them. Note thadlidenot want to replace the mathematics
developed by mathematicians by formalized theori¢ise formalization was for him only a
methodological tool that should enable the studghebries as such.

To formalize a theory one should first fix a syribdormal language with formal
rules of constructing formulas in it, then fix appriate axioms expressed in this language as
well as accepted rules of inference which agairushbave an entirely formal and syntactic
character. A proof (exactly: formal proof) of arfmula¢ in such a theory is now a sequence
of formulaso, ¢2, ... , ¢n such that the last member of the sequence ®thailae and all
members of it either belong to the set of presuasadms or are consequences of previous
members of the sequence according to one of theptaat rules of inference. Observe that
this concept of a formal proof has a syntactic abr and does not refer to any semantical
notions such as meaning or interpretation.

Note that formalization is connected also with tldea of mathematical rigor.
Detlefsen [6, p. viii] writes:

[W]ith the vigorous development of techniquesfofmalizationthat has taken

place in this [i.e., 20th century — my remark, R.&entury, demands for rigor
have increased to a point where it is now the ragyorthodoxy to require that, to
be genuine, a proof must be formalizable. This eashon formalization is based
on the belief that the only kinds of inferencesnuditely to be admitted into

mathematical reasoning dogical inferences [. . .].

Comparing the usual proofs of mathematical reseprahbtice (informal proofs) and formal
proofs one can see that both types of proofs coobisteps of deduction. They differ by the
properties of those steps. According to Hamami @@ can distinguish here three types of
differences: formality, generality and mechanigalitnformal inferences are meaning
dependent, matter dependent and content dependhemasvformal inferences are meaning,
matter and content independent. Hamami [10, p. @r@¢s: “To say that logical inference is
formal is to say that it is governed by rules of inferemd@ch only depend on the logical
form of premisses and conclusion, and not on tineaning, matter, or content.”
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Tarski [25, p. 187] said: “[T]he relation of follomg logically is completely
independent of the sense of the extra-logical @mstoccurring in the sentences among
which this relation obtains [...]."

Informal inferences are non-general wheras foromas are general. This means in
particular that the former are topic-specific, abjmatter dependent and domain dependent,
and the latter are topic-neutral, subject matter @mmain independent. Detlefsen [5, p. 350]
wrote in connection with this:

The mathematician’s inferences stem from and refieknowledge of the local
“architecture” (Poincaré’s term) of the particulsmbject with which they are
concerned, while those of the logician represeny @nglobally valid, topic-
neutral (and, therefore, locally insensitive!) foofrknowledge.

Hamimi [10] explains that the claim that logicafdrence is general means in particular that
“Iit is governed by rules of inference that generally applicablei.e., that are applicable to
propositions — premisses and conclusions — belgrigirany and every topic, subject matter,
or domain” [10, pp. 684-685].

The last difference between informal and formadgbs distinguished by Hamimi is
the property of mechanicality: informal ones arendinoechanical and formal ones —
mechanical. What does it mean is explained by dleviing quotations. Kreisel [16, p. 21]
writes:

Mathematical reasoning, except in the ‘limiting'seaof numerical computations,
does not present itself to us as the execution efhanical rules [. . .] The
connection between reliability and the possibilagfy mechanical checking is
usually, and somewhat uncritically, taken for geaht

And Hamimi [10, p. 695] says: “To say that logig#flerence isnechanicals to say that it is
governed by rules of inference that are mechanical

One can distinguish here two senses in which lbgiages of inference are
mechanical: mechanical applicability and mecharcbalckability.

Add at the end of this section that the concepa édrmal proof enables us to study
mathematical theories as theories, to investigata properties, etc. It makes possible the
entirety of metamathematics. However, the followqgestion arises: what are the relations
between formal and informal proofs. Recall that fet one is a practical notion of a
semantical character, not having a precise dedmitThe latter is a theoretical concept of a
syntactical character used in logical studies. Mtaticians are usually convinced that every
“normal”, i.e., informal mathematical proof can bensformed into a formalized one,
however there are no general rules describingthaacan and should be done. This thesis is
sometimes called Hilbert's thesis. Barwise [3] werdt[T]he informal notion of provable
used in mathematics is made precise by the forrotibm provable in first-order logic
Following a sug[g]estion of Martin Davis, we referthis view adilbert’'s Thesis’

In fact a formalization of an informal proof regesr often some original and not so
obvious ideas.

3. Truth in Mathematics
We indicated above that “normal” mathematicians. (inathematicians not being logicians or

specialists in the foundations of mathematics) do distinguish in their research practice
between provability (in the broad sense) and tritbreover, those two concepts are usually
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identified in practice. This was done also by folisia* Godel wrote in a letter of 7th March

1968 to Hao Wang [cf. 29, p. 10]: “[...] formalistensidered formal demonstrability to be an
analysisof the concept of mathematical truth and, therefoeee of course not in a position to
distinguishthe two.”

Note that “mathematical truth” should be understdoete in an intuitive way.
Moreover, the informal concept of truth was not ocoomly accepted as a definite
mathematical notion in Hilbert's and Gddel's tinehere was also no definite distinction
between syntax and semantics. This explains atsepime sense, why Hilbert preferred to
deal in his metamathematics solely with forms afrfolas, using only finitary reasonings
which were considered to be secure — contrary toaséical reasonings which were non-
finitary (sometimes called: infinitary) and conseqtly not secure.

The precise definition of truth was given by Targk his famous papePojecie
prawdy w gzykach nauk dedukcyjny¢p4]. Referring to the classical Aristotle’s defian
he attempted to make more precise the concepuibf with respect to formalized languages.
In such languages “the sense of every expressianambiguously determined by its form”
[27, p. 186].

Tarski defined the concept of truth by using thaaept of satisfaction, more exactly,
satisfaction of a formula on a valuation by a giweterpretation of primitive notions of the
considered language, hence in a given structurs. ddfinition refers to the so called
convention (T) according to which the statementoi8rs white” is true if and only if snow is
white. In fact Tarski did not give a definition ¢futh but defined only the class of true
sentences (of a given language).

Tarski’s definition has an infinitary characterhetinfinity appears in the reference to
infinite sequences of elements of the considenedttsire (valuations) as well as in the case of
satisfaction of formulas with quantifiers. It dogst go beyond the extensional adequacy and
does not explain the essence of the truth and iofjldeue. It relativizes also the concept of
truth to a given structure or domain.

In the above mentioned paper [24] Tarski formulatdgo the theorem on the
undefinability of truth. It says that the concceptruth for given formalized language cannot
be definied in this language itself — to do thisrenpowerful means are necessary. In other
words: the set of sentences true in a given streatinot definable in it (though in some
cases it is definable with parameters). Tarsknidated this theorem as Theorem I, poft (
[cf. 26, p. 247F “[A]ssuming that the class of all provable senesof the metatheory is
consistent, it is impossible to construct an adegukefinition of truth in the sense of
convention T on the basis of the metatheory.”

One of the consequences of Tarski's theorem igatttethat in order to construct truth
theory, for example, for the language of the arghmof natural numbers (hence a theory of
finite entities) one should apply more powerful mgan fact the infinity. In other words: the
concept of an arithmetical truth is not arithmdticdefinable. Generally: semantics needs the
infinity! It indicates also the gap between the tagtical concept of a (formal) proof and
(formal) provability on the one side and the conagftruth. In fact, for example, the set of
true arithmetical sentences is not definable inldmguage of arithmetics whereas the set of
provable sentences (theorems) of arithmetic ihraetically definable, even more: it is
definable by a simple formula (more exactly: byenfula with one existential quantifier and
logical connectives as well as eventually boundedntgifiers). Hence one can say that the
concept of truth transcends all syntactical means.

The indicated difference between the (definabdtythe concept of) provability and
(the undefinability of the concept of) truth wae tkey reason for the famous incompleteness
theorems proved by Gddel [8]. G6del wrote on hgcalvery in a draft reply to a letter dated
27th May 1970 from Yossef Balas, then a studetit@tUniversity of Northern lowa [30, pp.
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84-85] and indicated there that it was preciseby rieicognition of the contrast between the
formal definability of provability and the formalndefinability of truth that led him to his
discovery of incompleteness. The first incomplessneéheorem implies that in every
consistent theory containing the arithmetic of r@taumbers there are undecidable (i.e. that
can neither be proved nor disproved) statemergsich that one formula of the parand
none is satisfied/true in the intended (standard) madehe theory. It shows that (formal)
provability is not the same as truth! However bdtlese concepts are connected by the
completeness theorem stating that a statemémnia theorem of a theoflyif and only ifg is
true ineverymodel of T. And theories usually possess (infinitely) manyisias models — not
only the intended one (called: standard). So we hiaat:

1. if a formulag is provable in the theory then it is true in every model @t hence also in
the intended model af,

2. it is not true that for any formulg if ¢ is true in the intended (standard) modeT dhen
it is provable inT.

Add that when “normal” mathematicians are sayirgf #n given sentengg is true then they
have in mind that it is true in the intended (stnadl model.

One should mention also another phenomenon. Asatedl above the concept of
truth/true sentence for a given languages not definable in the languageitself. However
partial concepts of truth for formulas bfare definable ir.. More exactly: if one considers
only formulas ofL with a given maximal number of quantifiers (thssim fact a restiction of
the complexity of a formula) then the conceptsatissaction and truth for such formulas of a
languagd. are definable . It can be proved that the definition of the Saiition predicate
for formulas with maximallk quantifiers is a formula witk quantifiers, i.e., a formula of the
same degree of complexity. Details can be fourmlimmonograph [18].

The concept of truth/true formula can be invesédaalso by mathematical, more
exactly: by axiomatic-deductive methods. Conditidosnulated in Tarski’'s definition of
truth can be treated as axioms characterizing rib@igate of being satisfied and true. Such an
approach has been studied in detail for the caswithimetic of natural numbers — cf. for
example [17] and [21].

Results obtained by described investigations shioat not for every model of
arithmetic one can define a concept of satisfacéind truth on it having natural properties
assumed and required by Tarski’'s definition. A 1sseey condition is here the property that
the model should be recursively saturdtédiditional properties of a model must be assumed
if one requires that the concept of truth uporiverg model have some useful (and natural)
properties like being full (i.e., deciding the truaf every formula on any valuation) or being
inductive (this property means that the inductiom@ple holds not only with respect to
formulas of the language of arithmetic but alsodarextended language augmented by the
satisfaction/truth predicate).

It also turns out that if a concept of satisfactand truth (called a satisfaction cl3ss
for a given structure can be defined then it camldr@e in many mutually inconsistent ways,
i.e., if there exists a satisfaction class on tledeh then there exist many such satisfaction
classes. This shows that the axiomatic charaet#siz of the concept of satisfaction and truth
based on Tarski’s definition is not complete andjue, that Tarski’'s conditions (treated as
axioms) are too weak. This phenomenon can be retnbyeallowing more powerful — for
example set-theoretical — means. All this showsctmaplexity of the concept of truth.

We indicated above the gap between provability syndactical concepts on the one
hand and satisfaction/truth and semantical conceptthe other. However it turns out that
the concept of truth can be (in a certain senggaced by the concept of consistency (hence:
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a syntactical concept) in the so calledogic (it is a generalization of the usual claaslogic
obtained by admitting the so callegtrule and reasonings of infinite length) and by the
transfinite inductioff. This confirms the thesis that semantical concepth as satisfaction
and truth require infinitary means. Such concepts be expressed or replaced by richer
syntactical ones, however, this requires the reasign from the requirement of being finitary,
in particular from the natural requirement thatragh must have a finite length and can refer
only to finitely many assumptions.

4. Conclusion

In research practice mathematicians do not fix@madot restrict allowed methods of proof —
any correct method is practically allowed. A matlaégian wants to know what properties
the considered and investigated structure (intestiedture/model, standard structure/model)
has or whether a particular property is true/hahdghis structure. She/he is not interested in
the problem of whether this property can be deddiced a certain given and restricted set of
axioms. Therefore, for example, a specialist in bentheory who investigates the structure
of the natural numbers (i.e., the structuxge § +, [J0) whereN is the set {0, 1, 2, 3, ...]$
denotes the successor function, + amtknote, resp., addition and multiplication of maku
numebrs and O denotes the distinguished elemefgdcatero®) is not working in the
framework of a fixed axiomatized formal system oithemetic but is using any correct
mathematical methods in order to decide whethevrsidered property is true/holds in the
investigated structure (in the intended, standaaotleh of arithmetic of natural numbers).
Consequently she/he does not hesitate to use egthods of complex analysis (as is done in
the analytic numer theory) if only they can be ubef deciding the considered problem.

The informal and vague concept of proof used byheraaticians in their research
practice can be made precise by the concept ahdioproof. The latter makes possible exact
metamathematical investigations of mathematicabriee — more exactly of their formal
counterparts (and not of real theories considegethbrmal” mathematicians). However the
formal concept of proof (with precisely descrilmd restricted rules of inference) as well as
the very concept of formalized theory based draite some limitations indicated by Gddel's
incompleteness theorems. On the other hand thespreoncept of satisfaction and truth
relativizes truth to a given structure/interpretati The concept of formal proof is adequate
with respect tall models of a considered theory (as the completdhessem states) and not
only to the truth in the intended/standard struetll this implies that metamathematical
studies of proofs, structures, theorems and theaasi® not exact counterparts of what
mathematicians are really doing in their researelttre, they are in fact idealizations of the
real practice.

Let us finish our considerations by quating AlffEarski who in the paper “Truth and
proof” wrote:

Proof is still the only method used to ascertaim tifuth of sentences within any
specific mathematical theory. [...] The notion ofraet sentence functions thus as
an ideal limit which can never be reached but whightry to approximate by
gradually widening the set of provable sentences] [There is no conflict
between the notions of truth and proof in the demelent of mathematics; the
two notions are not at war but live in peacefubastence [27, p. 77].
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Notes

1. For the development of the concept of truth seeeéhi [31]

2. For more on proofs in mathematics and their roke @ example, Murawski [22].

3. Cf. Kahle [11].

4. For the development of the process of distinguigltioncepts of provability and truth see,
for example, Murawski [19] and [20].

5. Add that in the footnote Tarski explicitly statést his proof of this theorem uses Gédel’s
method of arithemtization of syntax and his metlbbdliagonalization, however he stresses
that he obtained his result independently.

6. For definition see for example Kaye [12].

7. The concept of a satisfaction class was introdusdgdrajewski [15] and studied among
others by Roman Kossak, Henryk Kotlarski, Staniskaajewski, Alistair Lachlan, Roman
Murawski, Zygmunt Ratajczyk.

8. Cf. Kotlarski and Ratajczyk [13] as well as [14].
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