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Abstract

Gravitation is introduced as a gauge field that couples to the impulsion in the Lagrangian approach to the
classical mechanics. The equations of motion in a central static field yield an amazing result: a repulsive
gravitational potential appears at short distance. As a consequence black holes would have a stable and
finite size, thus eliminating gravitational singularities. The expansion of the universe and its acceleration
could be explained without recourse to a hypothetical dark energy.

1. Introduction

A short historical review

After Einstein produced the famous General Relativity (GR) theory for gravitation, several theories
were then also proposed to either improve, reinterpret or supplement GR. The aim of these efforts
was to quantify gravitation and explain later discoveries like the expansion of the universe. Several of
these theories are based on the non-zero torsion of the space time. Elie Cartan did develop a model
where torsion would be generated by angular momentum Scholz|2018;|Hehl and Obukhov|2007
Blagojevis and Hehl[2012: Cartan associates to each closed infinitesimal contour a rotation (which
expresses curvature) and a translation (which expresses torsion). In Cartan’s mind the rotation can
be represented by a vector and the translation by a torque. Tetrad formalism, teleparallel gravity,
Weitzenbdck and Méller theories are shown to be equivalent to GR in reference Arcos and | G Pereira
2005, and reference Schucking|2008 shows that the Schwartzschild metric can have an interpretation
of teleparallelism in the Pound-Rebka experiment. An Introduction to teleparallel gravity is given in
reference Lurie[2013|where curvature =0 and torsion is the gravitational field strength. In consequence,
there are no geodesics in Teleparallel Gravity, only force equations quite analogous to the Lorentz
force equation of electrodynamics. The authors expected this result by because, like electrodynamics,
Teleparallel Gravity is also a gauge theory. Gauge theories for gravitation are treated in Hayashi
and Nakano|1967|in a formal mathematical frame, and in|Arcos and | G Pereira2005; Kleinert 2010
where a mathematical formalism in which torsion and curvature can be exchanged via a supergauge
symmetry leads to the GR equations. Translation gauge potentials Ivanenko and Sardanashvily
1987/ meet Cartan’s idea of the spin of matter being the source of torsion: The gauge gravitation
theory based on the relativity and equivalence principles reformulated in fibre bundle terms is the
gravitation theory with torsion whose source is the spin of matter. “Since translation gauge potentials
fail to be utilized for describing a gravitational field, a question on their physical meaning arises.”
“Therefore, translation gauge potentials may be responsible for weaker forces than gravity as discussed
by some of the authors.” Goldstonic supergravity, supergroups, supertransformations, superspace,
supersymmetries, superfunctions etc. are examined in a mathematical frame in this paper. The
expansion of the universe and its acceleration are explained in the framework of GR by the action of
a phantom dark energy Peebles and Ratra2002; Dutta and Scherrer 2009|in the ACDM model.
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The present work

This is a new approach on gravitation. In the opposition to GR it is defined as a gauge theory
with the gauge group of translations. The source is the energy impulsion tensor that is conserved
which results from the invariance of the Lagrangian under the group of translations. Gauge theories
introduced by Hermann Weyl postdate GR and are now a successful mathematical formalism in
providing a unified framework to describe the quantum field theories of electromagnetism, the weak
force and the strong force. Here our gauge symmetry group of translations is abelian as is the U(1)
group for electromagnetism and this makes the mathematical treatment simpler. The graviton is
defined as a massless spin 2 boson. At this stage one can notice that abelian gauge theories have
massless gauge bosons with the infinite range.

We will follow the classical Lagrangian approach where space-time is distorted by the pres-
ence of a gravitational field. This distortion will induce a change into the metric. At infinite dis-
tance from massive bodies where the gravitational field tends to zero, the metric is Minkovskian

1 0 0 0

0o —-1 0 0

o 0 -1 0

0 O 0o -1
time and into the metric. With the Pound-Rebka effect as a first result. Then we will introduce
the gravitational potential into the Lagrangian that leads to the classical equations of motion. This
will lead to the equations of motion of a body in a gravitational field. The action change under
gauge transforms of the gravitational field is evaluated, as well as the symmetry properties of the
gravitational potential. The equations of the field are thus derived. We can then apply the equations
of motion in a central static field, beginning with the deflection of light by a massive body, the sun in
this case. Newton’s law is then demonstrated, as is the principle of equivalence. The non-relativistic
and relativistic equations of motion in a central static field are expressed in polar coordinates. The
precession of Mercury’s perihelion is calculated which fits well to the measured value. The equations
also show that black holes must have a finite size, when the attractive and repulsive gravitational
forces are in equilibrium. Some considerations on black hole properties follow, and also on the
accelerated expansion of the Universe.

. We will begin with the introduction of the gravitational potential in space-

2. The gravitational field I'}f
Time-space, vectors, metric, scalars and so on
In our 4-dimensional space-time, we can meet vectors (ex: x"), covectors (ex: py.), scalars that are
the contraction of a vector on a covector: x*ay = (xla). A scalar can also be produced from two
vectors x* and yY with the help of the metric g;;v: x*¢uvy" and conversely x,¢""y~ with two
covectors xy, and yv , g*V being the inverse matrix of g;,v. We can consider that x, ¢"" is a vector
xV that contracts with y- In the free (free means that there is no gravitation) space-time, the metric
1 0 0 0
is Ty = 0O —-1 0 0
o o0 -1 0
0 0 0o -1
Now a word about the contraction operator that creates a scalar from a vector and a covector:
Let the vector be x* = (x° x! x? %) and the covector be ay = (a9 a1 az a3). The scalar

the Minkovskian metric where 1,y =" is its own inverse.

(xla) is made by multiplying x° with ag, x! with a; and so on and then taking the sum. It could have
been x"a; + x'ay + x%a3 + x°ag or any other mix of indices but it is not. The operator governing this
1 2 3 0 y % g g
contraction is the Kronecker M that will make that x matches with ag, x! with a; and so on. Thus,
we write: (xla) = x*8Y ay Also xp g"Vyy = x 6“g}‘pévyv : here we have a double contraction on
) B Tk A P o
pand v. All this may seem trivial, but we will demonstrate that the gravitational field acts on the
contraction operator 8:{ in the following way: 61[ becomes SL’L + F:L’ when acting on the impulsion
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pv. For instance, this modifies the differential of the action
ds = pudx* to dS’ = pu(55 +THdxY = pudxt +purbldxv

. This can be compared to the action that includes an electromagnetic field A,: dS’ = p dxH +eAdx™
Mass m will also be a subject to the change in a gravitational field. One had m* = p nyuvpv or

2 _ E? 2. o Y
m> =" —p°in the free space. In a gravitational field p,, = dupv becomes

pu = (8} +T)pv and m'? = p)\(éﬁ + Fﬁ)n”v(éf’, +T9)pp = m? + 2p, TPV py + T terms.
This explains the slight mass gain of a body moving in a central static potential. We can also write:
m? = prg"Ppp with the metric in a gravitational field becoming ¢*P = (83 + Th)n*Y (85 + 1Y) a
metric for covectors. And g, = ()1 = G5 — MMy (85 — 'y) would be the metric for vectors.
Developing to the first order in ' we get: ¢*° =P + 2[“&11 HPand grp =Map — ZFiLnup

It will be shown later that I} is symmetrical in p and v and can be made diagonal by a suitable

change of coordinates. This change leaves 5% invariant. Then g}‘p can be written, to the first order
inT:

1+2r) 0 0 0
x_| 0 —1-2rf 0 0
570 o 0 —1-2rZ 0
0 0 0 —1-2r3
And
1—2ry 0 0 0
_ 0 —1+21} 0 0
ST 0 —1+2r2 0
0 0 0 —1+2r3

The Pound and Rebka experiment

The Pound and Rebka experiment shows how the time is modified by the gravitation: thus only Fg
is acting and di> becomes dr>(1 — 2IY)). The scalar time lapse Idil becomes Idrl(1 — TJ). Let us write I
for Fg. The Figure [1|shows the layout of the experiment:

radius rto centre of planet, mass M

Figure 1. Pound-Rebka experiment
At point 1, dry = (1 — T)dr. At point 2, diy = (1 — ) ds, so that:

dy _1-T
d[z 1-T15
%1 was measured by Pound and Rebka in 1960 to be equal to: 1 — GC—ZM(% - %) Which allows us to
identify Fg to %XI Here M is the earth mass, G the gravitational constant, ¢ the speed of light and
r1,2 the distance of points 1 and 2 to the center of Earth.

:1—F1+F2 (1)
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3. Equations of motion in the gravitational field I'}f
Classical mechanics tells us that the trajectory of a body between two points A and B is the path
where the integral of the action dS is minimal, with dS = p, dx" and py being the impulsion of the
body. The occurrence of a field I will influence dx* and generate the equations of motion of a
body in a gravitational field.

Let us consider the Lagrangian equation of motion, seen from a geometrical point of view. A
small deviation from the trajectory between the two points A and B will not change the action to
the first order:

Figure 2. Action variation

or: §I _ppudxt =0 Which is equivalent to: ffA(aupv — dvpu)dS =0. Thus, dupy — Ovpu =0
Pv . opv
Mulnplymg by v* = £~ one gets: dfj[ o — VM Ovpy = 0. Since 3y vt =0 and dij; aiu = %Pv

we get: dzp" - a?cv (v Pu) 0
But v#p,, is the Lagrangian £, defined as the time derivative of the action:

S = /pudx”=/puv”dt=/£dt.

We can write the equation of motion as:

d )
@t e t=Y

d 9L oL
or T — axvﬁ 0 with py = v

When the gravitational field I is introduced we get the following action: S = [ p, (85 +TY) dx"
Thus S = [ pH(d) + Y)Y dr = [ L dr which implies

L= Pu(‘sk} + Y)Y

Equations of motion
1st term:
doL d d d d
dion %(PV“LN}PLL): ijJrPujr\l/lJrr\l/LEPu (2)
w
d ar I et g Opu (3)

S e Y g
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2d term:

oL
axv axy (ppV +7(pllrpv (4)

We simplify the notation by: 9y = W' Then, since 0 vP =0
0vL=vP0vpp +puupa\,r$L + vpl"#avpFL (5)

and assembling the simplified terms in the Lagrange equation, we get:

PHOupy + Ty Pdppy = pur® (v Ty — 0pT) + P T Oy pyu + 10y py (6)
Or:
HQ@upy + Ovpy) +vP (MY dppp + rgavpu) = Pqu(avrg —0pMY) (7)
and finally
P @upy = dvpu) = P[0+ (puTE) — 0o (pulV)]
And Vp(ava - avpp) = Vp[av(]?urg) - ap(Puer/l)]- (8)
The equation (8) is satisfed if
Op(pv + pul¥) — 0v(pp + pulp) = 0. )

Temporal and spatial fields
Let us define yy = pu I then, the equation (8) can be rewritten as:

vPApopv — vPOvpp = 1P (0vYp — 0pYv). (10)
Or, with vP0, = % and vP0vpp = 0y 1Ppp = 0 L as:
FAr e P (0vyp — pYv). (11)
If no other extra fields are present, % can be ignored and for v = 0 one gets:
d ; ,
ST (0rvi—0ivo) s i=1,2,3. (12)
Or, if we define E; = 0;yo — 0ry; we get:
J .
EPO = —VIE,'. (13)
For v=1,2,3 noted as v = i:
d
P =P @ve = 7)) 5 0 =0,1,2,3. (14)

For p =0, 1" = 1 and we get: 1(3;vo — dry;) = E; again. For p = 1,2,3 noted as p = j one has:
—=

uj(aiy/ ajy,) =7V Xroty. (15)
If we define H = rotﬂy we finally get:
d N N —
—7 =E+(V x H). (16)
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4. Symmetryof I}

Iy is a mixed co and contravariant tensor (its product with pyv* contributes to the Lagrangian
as a scalar). This 4 x 4 tensor can have a symmetric and antisymmetric parts. We show that its
antisymmetric part would correspond to a transform where the 4-length is preserved and there is no
distortion.

If dxMdx ¥y = dx? is the 4-length of the vector dx, then after I operation the length of the
vector will become:

(dxM + r;dx)‘)(dxv + r;’dxp)n pv =
= dxPdx "y + detnpy T dxP + de¥ iy r;dxA +Mpv F;rgdxxdxp

To the first order in T, and if the length is preserved, we would get: dx*dx¥ny = dxMdx¥ny +
dx¥ Ty pdxP + dxH Ty pdxP. Switching the dummy index v to p in the second term 2Ty, pdxPdx* = 0
and by symmetry of dxPdx*, T, should be antisymmetric. The symmetrical part of FQL’ is My VA
and also 1, and VA both are symmetrical. Thus T} = T\ The symmetry of pand v in T} ensures
that it will produce no rotation (or more generally conservation of the 4-length) but it will produce
only the distortion of space time. As a consequence 'Y will have 10 components and I} could
possibly correspond to a spin 2 graviton. Feynman 1995

To make it visual, consider the followmg Flgureslandl On Flg I the symmetrical Fz F1

creates a distortion in the 1, 2 plane. V+2 =T+ 2%+ 241 r1 (1 + 2)(1 +T?)

Figure 3. distortion

IfT2 = —TJ then we Would have a rotation instead of distortion, and as a consequence I would
alsobe—OlnsteadofGM Va2 =T+ 32+ 3+ T =T+ 21242 - 112,

Figure 4. rotation

5. The equations of field

We look for an action that is a scalar, gauge invariant and that includes only the rg terms. Such

an action will be noted as Sf- Let us start from % Py = aaiﬁ

xV

+ Vp(a‘v‘yp - ap‘y-v). The term
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(0vYp — dpY~) is invariant under gauge transform Iy — I3 + ’();)’T@ The action term [ py T dx”
is also invariant under the same gauge transform.
Expanding and neglecting % (no other potential but gravitational is present), we get:

d
YAl vPpu QvTE = 0pTY) +0° (M5 dvpu — T dppy) (17)

I I

The term I is invariant under the gauge transform Iy, — T} + 3y G*. The gauge transform leaving

invariant v~ and I must satisfy a;f) = 0 GM. The scalar term is (0 Fg — 0oy )? and it is defined
as:
OvTH = 9pM)g" *¢°P gy (Qaly — 0pTX). (18)
We define the action of the field as:
Sy = oc/(avrg‘ — 0,2 dQ. (19)

With « an arbitrary constant, dQ) = \/—g dVit, V is the spatial volume and ¢ = det(g,j) =—1+2TT, T
is the T} matrix. The action is now completed with the field — matter interaction term:

S- / pultY dO + o / (OyTE — 2T dO (20)

where p,, stands for the density of impulsion.
How does the entire action vary under a variation of the potential I'?

55 = / Slpur T + o (0T — 0, T2 (1 — TV di. (1)

The term in ocis equal to: ([8y Th — oY 1Y *+2nVATX) (PP +2nP T8,y —2n Ao “Fg -
aﬁrg] (1 — TeT)).

The variation of this product of six terms can be much simplified if we consider only the first
order terms in I in the product of ¢¥* =n¥* and 1 — TiT = 1. Thus, we get:

58 = /Wﬂ ST + ad[(@v T — 0pT) (2VTY — 3PTY)] dVili (22)
or:
55 = / P ST + 2005 TR — 0,TL) 5(2VTE — 0PTY) dvis (23)
where 0¥ =nVH0,.
58S = /puvv STy +2af(dvTh — 9pTY) 2V eIy (24)
—(0vTh — 3pTY) 0PsIY ] dVi. (25)
We swapped 0 and 8, and by swapping p and v we get:

58 = / pur ST + 4a(dpTY — 0 1Y) 2P ST Vi, 20)
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The term in 4« is integrated by parts:
/ (0pTE — 0yTE) 0P 5T dvil 27)
- 0P (@ort — aurp) sry dvi
R / (0pTY — 0y T) 8T dsP. (28)

The term [(0pT — 0y T 8T dSP = 0 since 8T = 0 in the time limits and (0,1} — 0y T5) = O at
oo. The field strength is 0 on the boundary at cc.
Thus we obtain:

By cancelling the variation of S and swapping p and v in the first term we have:
pvrt — 40dP (@1 — 04 Th) = 0. (30)

One corollary of eq. [30]is that the divergence of the energy impulsion tensor (pyv*) is equal to zero.
Indeed, swapping the dummy indices v and p, we get:

= 40(0V 0P, — 0Y0P0,IY) = 0. (31)

Now let us evaluate 4o If the source current py v is generated by a mass with rest density p
V= p§Y8Y % and from (30) :
puv” =p 5y 8\ ¢ and from we get:

o = 4a[0y0VTY — 2V0,10]. (32)

With the mass density p at rest, the field ') must be static: 9,1 = 0 and p® = 4 A rg with A the
Laplacian. A solution is: rg = ﬁ i % dV which for amass M = [ p dV and since Fg = C%/I, we get:

4 4
¢ g ¢
- -y = . 33
16T G[msz]—>4oc e (33)
Eq. [30|can be rewritten:
4nG
0P (@pTt — dvT) = 2 pyot [ 2] (34)
¢
where pv is the density of impulsion.
Depending on the values of 1, v we have the following field equations:
1) w, v =0; povo = pc2
@p = 0\ — 020, [m=2] (35)
c
and if the field is static, we get:
4nG GM
AT = —Zp = T = — 36
07 2 07 12 (30)
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with M= [ pdV. The equations of motion in a central static field will be considered in the next
chapter.
2) Let p, v 70 are denoted by i, j, then for v < ¢, p ~ pv we get:

4G
A

v = MO — 3,1%) [m 2], (37)

This is symmetric in i and j on the left-hand-side and can be made symmetrical in i and j on the

right-hand-side because F{ = Fj" and by a kind of “Lorentz” condition: a?\r;\ =0
Gravitational waves ,
Equation can be rewritten assuming the above “Lorentz condition™: 67‘1& =0 as:

4nG
0PI = Ty, (38)
C

In the vacuum: '
0PI, =0= (Ea[a, — Z 0,0,)TH
1

the field Ty (the massless graviton) is a wave propagating at speed of light. It can be seen as a massless
particle that propagates a gravitational field.

6. The test of deflection of light by the sun
At this point we have enough results to perform the first test of this new theory, it is a kind of "stop
and go" procedure as in the following scheme:

The gravitational potential of the sun is considered as central and static:

GM
>

rh =858, T)=T= (39)

rc

The impulsion of the photon is 7 = hkand b = (w, kyoo,0,0) = (w, w,0,0) in the x, y plane shown

Figure 5. Deflection of light
on Fig. and 7 = (1,—1,0,0) with ¢ = 1; in the following calculations we also take ¢ = 1 = 7 for
clarity.

With the symbol k= %k eq. [11|gives:

key = vP [0y (kpuTh) — 9 (k)] (40)
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With I} defined by eq. 39} it gives rise to:
key = 190 (koT) — vPdp (ke TY)
For ko : ko = 190 (koT) — vp0p(kol); p=(1,2,3)
ko = 3;(koT) + 31 (koT) = T3,k + kod,T + T3 ko + ko0 T

since 9,7 = 0, ky = Tk + 01 ko) + ko0 T
With x = xoo — ¢f = x00 — t (with =1), — 9, = —04 (where 3y = 0,). Thus,

ko = kodqT

For k;: ki = 1°9;(koT) — P9 (k) = 9;(koT). Remembering that for vy = 1, T}, = 05 0.
Along the coordinate y = 2, ky = 02(koT) = 9y (ko) = ko>T, since dkg = 0. Thus:

]6.2 = ]60 0ol
With ko = ko9 T the time derivation of k, reads

k= 35 (koT) = (koDaT) = kodaT + kodal" — ko = kod T + kod2(13;T).

77

(41)

(42)

The first term is in 02 and can be neglected versus o' (I ~ 1079 at surface of the sun). Thus,

ke = ko9 (100, T + v104T) , with »° = 1, »! = —1 and 9, = —9. This leads to:
ley = kgda(—01T — 31T) = —2kyd1 .

Since I'= M — GM with c=1
xRy
- —yGM

9ol = (2 +2)372

3xyGM
010, = ————=
(x2 + y2)572

then
GM
ky = —Gkg—

Wich ky = —L ‘ZI’; ‘{L; and dx = —1 we get ly = — f/ez dx. Thus

]\2 = 6LOGM/ ﬁ dx.

Integrating again with dx = —dr we obtain:

GM
ky = 2koGMy / Wd - 2k Y
Thus, ky = g G}]}VI
by  —2GM
% = I({; = tan(o) ~
0
4GM

(44)

(45)

(48)

still with ¢ = 1. Reintroducing ¢ we get a total deviation as 2« = =2+ This corresponds to the

measured value and is the first succesful test of the validity of this new gravitational model.
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Figure 6. Total deviation

7. Equation of motion in a central static field
The basic assumptions of a central static field are: The field F/ = rg 6]0 6? , Fg =T o=0T-= uiajr,
r=GM

Starting from eq.

and

pv = Vp[aV(Purg) - ap(Purv)l

For i = 1,2, 3 one has:

pi = v*i(pol) — v/3;(polY) = Bilpol). (49)
For i=0:
po =1"9:(pol") — v'3;(pol). (50)
Thus:
pi=0i(pol") = podiT" +Td;po (51)
and
po=—v"0;(pol") + Tdpo. (52)
We now calculate ji:
i = (podiT + Tip) = podiT + podiT + 1 + Mdifiy. (53)

Then replacing pj in eq. We have:

fi = (—1/3;(poT) + TOpo)d;T + (54)
1
(podi(3;T) + (55)
———
)il
v0;Td;po + (56)
N—_——
11
ra,'(—vlaj(por) + ra[po) . (57)

114
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The term I + IV gives: ai[r(—ufaj(por) +T29po], and the term I + III gives: a,-[pouiajr], so thus,

i = 3ilpor/d;T + T20,pg — T (pol)] (58)
= 3i[por/d;T + T20py — T/ (pod;T + T9,p0)] (59)
= 3il(por/a,T)(1 — T) + T%(2 ,po—ula 0)] (60)

Also 0,pg — ujajpo = po and eq. gives:

po =Tdpo — Tw'dipo — vpd,T" = Tpy — v'podT. (61)
i9,T
Then piy(1 —T) = —pov'd;T or py = —L-F.
Replacing in eq. . we get:
. 2 )
= 04| o3 = 1)+ o) (62
Or:
; 1-2T

Non relativistic equations of motion :
For v < c and no external field, py ~ mec? and pi= Sikvl"m =my;still for i,j=1,2,3
Equation 63| becomes :

pi=mcvld; [ rra F} +mc*dj) [_?ajr} (64)
o r d,T,T r
T1—2 T, T1—2
- 2 j AT _ ) 2. .
mv; = mc-v [1 — 0,0;,1 7(1 — F)Z} +mc= 0/ [1 —T ajr} (65)
This results in:
5 = oyl -390 — a0 [ o (66)

Equations of motion in polar coordinates r, ¢
Let us now evaluate the equation of motion of a body in the central static gravitational field I,
with T = % and % = 0 in the polar coordinates r, @.

In the reference frame ¢, 7, # dé; and ¢ d” . Thus, € = #¢ and 7 = —2¢ The

velocity is given by 7 = i€ + r¢ 7. The gradient of a scalarf is af i}F_’ + 1/ra—f .

Let us first evaluate the last term 9,/ [ 29, F} in the equation 66} so that we have

. 1
o) = 0,(ief +r@m)ef + =0 (ief +rou)u; = ¢ujef (67)
r
and
Sl GM,
o =01+ Logr- - =



80 Hubert Antoine ™2 ¢f al.

Figure 7. polar coordinates

217) = 0. Thus, when developing eq. We are left

This term contains the factor ¢/#; ¢f = 0 since (¢

with two terms: Term 1= (1 — 3T+ 2r2)u/ajair) and term 11 =(—uiajrair).
—_—
I I
Developing them we have (we leave the arrow on top of e and # for easier identification)

Term I: The calculation of v/ 9;0,T" gives rise to

2GM _, , GM ., ,
V/a o;l"= (1’6 + T(Pn]| 2,3 e — 627311]11,) (69)
Indeed:
o), AN, . —GM_, —aM_,
0;0,I" = 3 el +1/r a(; fj = Or 22 e,')e]' + 1/ra¢(ﬁ ei)nj (70)

2GM ., GM -GM._,, GM s
=33 4q — 55 0)g U <a<p()€i”j—zz(a<p€i)”J>

2GM ,, GM_,_,
=———¢j¢ — <Nl
2r3 L, 23 [

(71)

since 3,7 = 9,'e + 19T}, 8,7 = =2 and 3T = 0.

Then eq. becomes.
u/ajair = rﬁ(eﬂej)ei — r2—3( j|”j)”i + r(pﬁ(nﬂe]‘)ei — r(pm(nj nj)ni (72)
(7717) = 1 and (€17) = 0 we get:

. 2tIGM _, . GM _,
V]aja,'r = 762r3 e — (piczr2 nj

Since (¢17) =

And term I becomes (with I = %‘f)

(1—3r+2r%)o;a,r
_,..GM GM2iGM _G*M?2iGM , _,
_(Zrczr3_3aczr 273 +2 A2 20 )ei
GM GM .GM _G*M? GM,_,
+(q)22+ Czr@zzf 2 22)' (73)
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Term II:
, ' ., —GM _, —-GM _,  G*M?_,
(—V]ajra,r) = —(i’(.’]‘ +r(pnj|ﬁej)ﬁe, = —TWL’I'. (74)
Collecting both terms I + II we get:
v 1 e 7_G2M2+4,G3M3 ., .GM+3.G2M2 2_G3M3 R
_— pm— i ¢ — = — n
c (1- GCZA:I)2 23 At O3 P2z TP A P64
(75)
v 1 GM GIM2 G3MB
2" (1 — CM)2 [ <_ r? H7 EEECT R B 70)
r
L(_GM G2M?2 GMP\ (77)
—— — .
272 A3 o4 ) ®
Since @7 = ¢ we get (we postpone terms in ¢ for the subsequent steps)
v —GM 9G2M2 2G2M2  2GPM3  G3MP
2 am\? 22 ¥ 3 A% 3 A O ¥ Ort ¢ (78)
(1-<)
—-GM _G*M? _GM?\ .,
Nz Ay e sa ) O (79)
v 1 d[/-GM _G*M?> _GM3\ _,
2 oM \2 dt 212 * AT oA ¢ (80)
(1-2)
+ ! ( 2/3G2M2 + G (81)
—_— (23— + ——) 7.
1 M 2 6473 661’4
e
The last term in can be shown to be equal to:
GM | G2M? GM3\ _d 1
_ _ il
2r2 4 oOrt dt _ GM 2
fzr
Thus we finally get:
v od 1 ~GM GIM?2 GMPN (52)
2 dt (1 - @)2 22 43 Ot ‘1
Czr

Integrating on time we get the gravitational acceleration (the integration constant can be set to 0
in a suitable reference frame)

——— + - e. 83
2 (17% 272 A3 Ot (83)

-

r

v 1 <GM G2M? G3M3>_,
v 7)2
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To the first order in G we find Newton’s law:

—GmM
e (84)

— .
N
F=mv=

r

and also the Equivalence principle stating that the effects of a gravitational field are identical to an
acceleration given by eq. .

It is interesting to note that the second term in (83) is a repulsive acceleration 36624%12. I
is usually very small compared to the first term. For instance at the surface of earth, with: M =
6102 kg, r = 6,37 10%m, G = 6,67 10~ 11 m3/kg52, ¢ = 3108m/s, the ratio of the repulsive force to
the main attractive force is 3%\4 ~ 2107?. Could this repulsive force be measured ? Possibly by

comparing the velocities of satellites at different altitudes. However, it remains open right now.

Solution in the polar coordinates r, ¢
The radial @ component of the accelerationV is:

d?r do
)

And its tangential 77 component is:

o drde 1d,,.
2 2w T o)

We thus get the following set of equations:

P (de)\?
a2 "\ ) T

-2 2812 343
2|(1-CM _CM JOMT G (85)
r 22 A4 Ort
and
1d,,.
;E(ﬂ(p) = 0. (86)

Eq. expresses the conservation of angular momentum and gives r>¢ = h with h a constant
(m?1s).
~ &r
Regarding eq. , we must first develop o as follows
drdr de . h
)

e

dr
di T dedi T 2de

_ dide WP R dr o,

ded A Al )
Eqbecomes
2l W2, W GM\ ™%/ GM _G*M> _GM>\ _
dag ) e mar) e e A )t @
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And after multiplying by 2

WA W dr, W2 GM\ 2 G*M?2 G*MP
LA Y Lo (1-== ~GM+3 —2 0. (89
2 dp? (d(p) r ( czr) ( 2r 42 ) (89)
Letu—fthen d(p ——%de—(; and%=f%j—;+%(%) So that we get:
&2 GMu\ 2 3G2M2u  2G3MP 2
—hzd—Z—thH <1— 2“) <GM— 5 "y T ! ) =0. (90)
) c c c
Or
2A02,.2 2A02,,2
du 1_2G£\/114+C]\1[U_CA2/[U+GAQIU
2 2 c c C c _
—h d(P —Itu+ GM 1— 2GMu G2ZM?2i2 =0
2 *
Dividing by h? and writing d” = 1 and rearranging, we get
VA + GM 1 65\24” 0
W+ — —— - —c | =
hZ 1 _ GZ\Z/IM
Or
" G2M? GMu\ '\  GM
u +u 1+ Czh2 1-— CZ = ? (91)

Eq. is the equation of the orbit of a body around a stationary body of a mass M for non-relativistic
speed.

Relativistic equations of motion of a body in a central static field
We rewrite eq. where we will use the relativistic impulsion 7" and py:

pi=0; [pov] rra r} (92)

Which with the relativistic impulsion of a body according to Landau and Lifschitz 1964} gives

N mv
p- (93
V-
L’Z
and
2
mc
po- (04
V
2

Then, one gets:

2T 1-2I .
] =20 oy (05)

poV]a |:r 6,]" + 71_
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The first term of eq. is:

2
mc . 1—2F
iy _ 2397 3.79.
]_ﬁua L—F ] 1;2 17r [1 37 +2r%)2;9,7 a,rajr] (96)
52
mc> i ~GM | G2M? 72G3M3 N (07)
d 621’2 641’3 C61’4 ¢

which is obtained in the same Way as eq. (82) was obtained from eq. .
The second term of eq. (95) is
1-— 2F 1-2I . 1
( 9 Mwdipo = (ﬁ)ajr v 9i———

V

[2
Which in polar coordinates reads
GM GM
aruf (re +r¢)n]|a( )/ a Fn) 23
2"
since 9" = 0 and 9; - =ﬁ(1_ ?) 3/2a( 2),

1*"7
But 9;(1?) = 0,(i* + 2 ?) el + 16 o (P + P2 and = 2r¢?e] since 3,(i?) = 0 = 3 (¢?) which
after combining gives the second term as

ooV 3/21—2I‘1 52GM

me=(1 52) T2 5z

_ 2 V 3/21 —3r+2r2 .0 -

= —mc=(1 — 52) W?r(p I'e;

1 GM G2 M2 G3M3. 1 ) 2 Cap s

ST ampla ag s )ancl - ) e
)

! —oM G2m? GM3 1 2 —3/2 . 2>

=( f%)Z( 272 T0TAS T oA )jz’m (1- 67) Q- e

and since 0;(v?) = 2r¢>¢;, we have: i2r¢?e} = i0,(r?) e = 19,(?) e} = d;,’ e; from which it follows

that Cizmcz(l - 62) Srip2e = jt\/l%a’ Combining the two terms, we get
2
o d[ md 1 ~GM 3GZM2 G M3
= — el.
P dt 1 2 1 GM 2 22 3 Ot
e \"7 e
Then integrating on time gives
. mc> 1 -GM _G*M?  GM?\ _,
r= 2\ 22 Va3 T ea )¢ (98)
/1_ﬁ(1_@) cer cr °r
2 Ar

This can be compared with eq. (83). Let us look at the left hand term of that equation where there
appears the time derivative of the relativistic impulsion. From the definition (93) we evaluate the
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time derivative of the relativistic impulsion as follows.

| =
<{
<
s
i

(99)

| =
<)

— (100)
Vi—-%

and when the force and speed are co-linear we would get

p’ = ((1 2)3/2> . (101)

In the following, since forces and speeds can have independent orientations we have to use the general
formula as in eq. for the time derivative of impulsion. Consequently in polar coordinates we
obtain

SN

) 1
V=(f—rp)TH ;(r%)?{
and
. 1 1 o
(7I7) = 51/2 = 5(%2 +2J.

Then egs. and result in the following cases.

—
ong 7

1
p

(Pe) | o)
[ 1[,; 22(1 — ?)3/2

and along 7 (dividing both by m)

(102)

S

P—rg? e 2 1 ~GM . GM? _ GM’ (103)
2 2(1 — ¥2)3/2 2 2r2 A T oA )

12 221 -%) 1_7(1 GM)

CZ [5 2 [zr

Eq. (102) represents the relativistic conservation of angular momentum, after the following develop-

ment. Multiply both by /1 — % so that = (12 (p) = —r ¢ 3 (52 Vz) Thus,

(= 1?)

<r2'¢>> 2

1
= == . 104
0 2(c2 =13 2(2—1?) (104)
Integrating on time gives (the units are again more physical in this calculation)
1
In (r Q) = 51 (52 — V2) +K (105)
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with k a constant, and after exponentiation and defining e* = h/c we obtain

f2@=\/(627V2)€K=\/(627V2)h/t=h“17§. (106)

For v < c one gets the classical form r>¢ = h however for the calculation of the precession of the
perihelion of Mercury we will use the relativistic equation eq.
Let us now develop eq. such that it will give us the relativistic relation for the orbit of a body

around a stationary mass M. After multiplication of both terms of (103) by /1 — 1(’—; we get:

s o2y _ + _ 107
r=roe 2(2 ) ¢ (1_ oM 2,2 3 64 (107)

Ar

#02) , 1 (GM G2M? G3M3>
)2

. . . 2
We now expand the first term of (107) so that r depends on ¢, using the relations ¢ = rﬁz 1-5
and i = (j[—(;(;o = r’rﬁz\ /1 — 'Z—; Then, let us calculate 7.

dr h v [ d (h | 2 dr)
r: = — —_—— — — — =
do 2 2 \de'r? 2de
2
N e AT NN = F)
r c r c 2 de c r
2
L P (=2, vy v d 2 o 1-5,
r=r2<r3r (1_?)+Z 1_?% 1—[7+ r2cf’ (108)

o : d 2 4P Ao od
Now\/1—'6’—2%\/1—5—2=1/25(1—':—2)=1/2%(—'C—2)and—vz=v2ﬁ=v2r7

After replacing by the above in we get:

2. =222 ' 12 N
i=(1 - 5)(—=—)— +(1 = =)= (109)
[s r 2122, 1 V2 c r
The two other terms in are
. _h2 V2
—re? = 7(1 - Cj) (110)
and
2 /.2
v ~ hr'v (111)

using 7 = f—(;d—;? and ¢ = e
2
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So the first term of (107) 7 — r¢? + e i) ) becomes:

20202 202
(1- 72)(7 + A 73) (112)

Dividing both terms of by (1 — 5—;) we get

(113)

- — = + —

5 4 3 2 2 2.3 4.4

r r 2 GM cr cr
(1-5)(1-M

cr

r r

—2i e 1 (—GM G*M? G3M3)

We now apply the same analysis to as we did for eq. After multiplying in by > we

have

_2h2 2 hZ " h2 1 GZMZ G3M3
A A ~GM +3 —2 0. (114)
3 2 r (1 ﬁ) oM\ Ar 42
T =
Letu=+ then d(p 7%251% and ;,%”2 = f%j—:fz + %([]%)2 So, we get the following differential

equatlon inu

-2 2 2712 3a13,,2
hzdu 12+ ( GMu) (1_1/2)_1(GM_3GMM+2GMu>=O (115)

d? 2 c 2 *
or
Pu 2 _ 2GMu G’M?*#> _ GMu + G*M?i?
2 I 7
P~ —Pu+(1 - =)"'GM : L g : =0
2 2GMu , GPM%i2 ‘
de? c 1 — 26Mu , M

Dividing by 2, writing j—(‘[‘) = 1/ and rearranging we get

GMu

M —
W au— —C (1 —% ) =0 (116)

W1 — ) 1— =3

or else
2 M2 M
W+ (1 + G2 il = = 5= (117)
20— 51 - o)) " R )

This is the polar equation of the orbit of a body (a planet) around a stationary body of mass M for
relativistic speed. Compared with eq. (91), it contains a relativistic factor (1 — ’[’—;) which has some
dependance on u. We try to solve this differential equation.
Let us find a relation between (1 — ?—;) and u. Observe that both 1/(1 — ﬁ) and u are periodic in
¢ on a classical non relativistic orbit, see Figs. and We define the relation between 1/(1 — E—;)
and u as follows.
1 u

(1_%:/1(%4)@ (118)

where u is dimensionless via the factor 1/S4. A and B can be derived from the values of 1/(1 — 'C’—j)

and u at the perihelion and aphelion of the planet, the result is, with e being the eccentricity A=
2)12 G*M>(1

2GM? ynd B-1 — SMH=C),
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Figure 8. u(¢)

1/(1-v¥c?)

1 2 3 4 5 6

Figure 9. 1/(1 — 5)(¢p)

1/(1 — 2) can be written as
C

2A02(1 _ 2
1 =(2GMu+17GM(1 e))
1-14) A 2h?

2

(119)

i : 2 :
For non relativistic speed v << ¢ it holds ( 1,_2) ~ (1+ %) and we get the conservation of energy:

2

) G2M2 1— VAP . . . .
mr = mGM 2(h2 ¢ )"', i.e., the sum of kinetic and potentail energy is a constant.

r
Then, the eq. becomes

" G>M? 2GMu G>M?(1 — &) 2G°M*u GM  G?M3(1 — &)
w1+ —o o~ t1- 212 ) ===t - 274
2h?(1 — C—z) c 2h 2k h 2h
(120)

8. The Schwarzschild metric

In order to calculate the precession of the perihelion of Mercury, we need to express eq. in the
Schwarzschild metric of the proper coordinates of Mercury and not in the Minkowskian metric used
up to now that corresponds to an observer situated at infinite distance from the massive body and
where T tends to zero.

In the spherical coordinates a gravitational field can be written to the first order as I = %;4

and the Schwartszchild metric is expressed as dt? = (1 —2)d¢? — (1 —2I") =1 dr? — r2d0% — 1% sin 0%d 2.
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Which gives for ' << 1 in a Minkowskian metric: dt? = d"> — di"> — 12d0? — 1% sin 02d$? with the
change of variables df’ = (1 — T')dr, dr’ = (1 +T)dr.

Then 7in eq. becomes 1+2¥ ‘;,t,rz =(1- 3F) dt’2 The (1 — 3T) factor applies to the first term

of (107) and eq.|115]

115{becomes

GM
(1 =30 (" +u) — (1 +4T7) = 2 (1—3r+2r3=o. (121)
Recalling that u = 1/r, u" is the second derivative of u by ¢ and ' = GMu/c. We also need to
consider the modification of the Laplacian in that generates I'; A becomes (1 + 2I')A and the
term GM(1 — 3T + 2I'?) must be multiplied by (1 + 2I")A. Thus, the final form of eq. is

(1= 30" + ) — (1 +41) M

3 (1+2N)(1 —3r+2M% =0 (122)

which can be simplified by eliminating the higher order terms

GM
(" +u) — (1 +6T) = = =0 (123)
Precession of the perihelion of Mercury
We now look for a solution of eq. in the form u = p+ o« cos(B @) with o = "Ch;éw @ and
= (”L;Q) Eq.|123|can be written
GM
W +u=(1+6GMul®)—— 2 (124)
or else
GM
W +u(l — 6 GPM> /P 3) = - (125)
Replacing u and solving for the term cos(B ¢) we get
G>M?
~BPeccos(Be) + (1 - 651 )arcos(Bo) = (126)

Thus p2 = [1 - 6%% } andp~1-— 3% we get for the homogeneous solution

2112
U= 0Ccos Kl — 3%) (p] . (127)

What is the resulting advance of the perihelion? With M = 2 1030 kg the mass of the sun, G =
6.67 10711m3/kg32, r=1/u=57.910"mis the average distance of Mercury to the Sun, e = 0.204 for
Mercury, h = 2.7 1012 m2/s for Mercury, ¢ = 3 108m/s. The period of revolution of Mercury = 88

days. We get a phase shift due to the 3% term. This shift is 6”[(2;;21\42 = 5.111077 radians per
revolution. This corresponds to 43.2” per century. The corresponding change in the position of the
perihelion moves forward to the orbit of Mercury, the accepted value up to now is indeed 43" in the
same direction.
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9. Blackholes

Objects whose gravitational fields are too strong for light to escape were already considered in the
18th century by John Michell and Pierre-Simon Laplace. When described by general relativity, the
black hole contains a gravitational singularity at the origin, a region where the spacetime curvature
becomes infinite and contains all the mass of the black hole.

First we will limit ourselves to the study of black holes having mass M with no electric charge
and no angular momentum. What happens to a body in the vicinity r of a black hole? Will it be
swallowed and disappear forever?

Let r be the distance of this object to the centre of the black hole, which is supposed to be located
at r=0 and to contain the mass M. We don’t know yet if the large body of mass M is a black hole or
not, at this stage it is just a homogeneous compact body with mass M "concentrated" at the origin.
The radial extension of the massive body does not matter as long as it is smaller than or equal to .
This is so, because if r is smaller than the radial extension of the large body of mass M, then some
amount of mass will not be taken into account when calculating the force of attraction at radius r.
When assuming r to be the radial extension of the body of mass M, the following equations express
the force acting on the surface of the bodyj, i.e. at radius r. Egs. and describe the motion of a
body in a central static field. The gravitational acceleration is as in , so that

5 GM\ ™2/ GM _G:M?> _G’M>
¢ B 1‘2[2 " 641‘3 B 661”4

F(r) is the radial force acting on a unit mass (unit [IN]). Let us evaluate that force. The central mass

M is supposed to be concentrated at the origin or at least on a radius smaller than r. We choose the
unit system (i—ZM =1 for brevity and clarity. Then,

F)=(1 - )2+ 5 2) (129)

has two singularities 1 at r = 0 and 0 at r=2. Between r=0 and r= GC—ZM the force is always attractive

(F <0, Fig. . The region from r=0 to r = Ci—zM is attractive, with infinite attraction for r = 0 and

F(r<1)

r/GMc?

DE— 1 12

-150

Figure 10. F for r < GM/c?

r= Ci—ZM Between r = (i—zM and r = ZCi—ZM the force is repulsive (F > 0) and is attractive again for

r> ZGETM. The force then follows a %2 law for large r. The point ZGE—ZM is stable in equilibrium with
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F(r>1) and (1/r?) law

Figure 11. F forr > GM/c®

zero force, and the corresponding radius is called the limit radius Ry. Note that it is equal to the
Schwarzschild horizon in GR. A black hole can never shrink to a null radius: An infinite repulsive barrier
at r= (i—ZM prevents this collapse to happen and Ry, represents the stable size of a non-rotating black
hole. At Ry, the surface of the black hole is in the equilibrium and no force is acting on the surface.
The force derives from the following potential ®(r), for r > GC—ZM and set to zero at 1o

o) = & (2(3;” “In (1 _ GIf)) ), (129)

rc rc s

Which can be developed in the series:

D(r<1)

Figure 12. @ forr < GM/c?

D(r>1)

r/GMc*

Figure 13. @ forr > GM/c?
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Or)=—— ——5 — ——7 —.... 130
( ) r 2r2¢2 3r3ct ( )
. . ) ) ) ) 202
This series is the sum of an attractive potential % and a repulsive potential equal to 7% —
g 31\;14 — .... The latter repulsive term could be seen as a graviton-graviton interaction term:lit is

negligible for large distance r but predominant at short distances corresponding to the Schwarzschild
radius. It has a maximum of (1 +In (1/2)) ~ 0.307¢% at R;..

The escape of light from a "black hole"
In Fig. We plot “® for a more intuitive understanding. We follow a classical approach equaling
potential and kinetic energies. We have for a unit mass m

1/2 mv® = mc? <2Gé\/1 +1n (1 — GA/I)) .
rc

Dividing by m and equalling v to ¢ gives rise to

1/2 = 2GM+ln 1—G—M .
rc2 rc2

There is no solution to this equation, the kinetic energy is always higher than the potential well, so

-@(r>1)

r/GMc

Figure 14. — @ forr > GM/¢?

light can always escape from the “black hole”. We have to find a new name for this class of bodies
having a radius close or equal to Ry: They’re not holes and they are not black either. Let us call them
CORE. Quasars could be such cores presenting red shifts and pulsations, as will be shown in the next
sections. The core radius of stability Ry is equal to the Schwarzschild radius of GR. The core sits

there in stable equilibrium between expansion and contraction forces. If there was no repulsive terms,
G*M?> _ G’M?

B 2r2£2 ._ 3r3£4 . . . . . . .

at a horizon radius equal to the Schwarzschild radius and a gravitational singularity would appear.

— ..., in the potential, then a solution would be possible where no light can escape

10. Red shift of a core
The core is still considered as a non-rotating mass M. From (1) we obtain (by taking the potential @

into account)
Qy @,
vill—— )=V (1——]).
(2) e (-3)

If the position 1 is at infinite distance r = 0o , then @ = 0 At position 2, r = Ry and @3 = 0.307¢
and then v = v,(1 — 0.307) = 0.693 v,. The frequency of a spectral line emitted from a point at the
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surface Ry, of a core will be perceived from an infinite distance at 0.693 times the frequency due to
time slowdown at the surface of the core. But if we take into account the potential well of 0.307 2,
the emitted frequency would decrease further by a factor of 0.614 since E = hv and E is reduced by a

factor (()(32(335 The total frequency shift factor is the 0.693 times (1 — 0.614) which is equal to 0.268.

11. Pulsation of a core
On the surface of the core, a mass is at equilibrium but can also oscillate radially around the equilibrium
point Ry . Let us look at its first mode of oscillation: For a unit mass m = 1 on the surface of the core,

the oscillation frequency w is \/g =k, and

dF P
S TG VE (131)
3
k= <
2GM

Thus, w = 5&p; for a core of mass M. For instance a non-rotating core of mass = 1000 times the sun
mass would pulsate on its first mode at w = 101 rad/s = 16Hz.

12. Expansion of the universe
The estimated mass of the known universe is in a range 1.7 10°2 t0 1.7 1054kg. Let us calculate the

R; of the universe.
_2GM
T2

Ry =2.510% t0 2.510% m.

¢
The estimated radius of the universe according to the standard cosmological model is 46 10° light
years = 4.2 1020 m. So the estimated radius of the universe is in the same range of magnitude as its
Ry radius and it could even be very close to its Ry radius! And the universe could then have some
properties of a core. Figure represents —® of the universe between 0.7 and 2 R;..

-@(r>1)

r/emc*

Figure 15. — @ forr > GM/c?

If considered as a non rotating core, the universe would pulsate around its Ry, size, at a frequency
26—3]\/[ or a period égf& =278 10° years, considering Ry = 4.210%%m = Z?—ZM (point 2 of Fig .

If the universe is now in an expansion phase, this would mean that its size is presently lower than
its horizon Rj.

If the universe had begun at a size < 1.27 Ry /2, it would have enough potential energy to expand
to an infinite radius if there is no energy loss during that expansion. Otherwise the universe will
oscillate or fluctuate around its R; radius, where @ is maximum. This resembles the A. D. Sakharov’s
concept of the fluctuating or oscillating universe (Al'tshuler|1991).
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13. Acceleration of the expansion of the universe
Let us consider a body of mass m situated on the rim Ry of the universe, the force acting on this

body is

F=mc

1 (—GM GZM? G3M3)
)2

+3 —
(1 oM 272 A3 64
CZT

The equation of motion is

mr—c

+3
GM

) 1 -GM _G’M?  _G’M?
— m=0
) 2\ 22 A3 e

Ar

with the potential given by

() =2 <2G§VI +In <1 - G]ZI)) .
rc rc

Again, we represent —® on the graphs, to make the presentation more intuitive. For small motion

-D(r>1)

rfemc?

1 15 2 25 3 35 4 45

Figure 16. Amplitude A

6

around the value Ry, we approximate F(r) by an harmonic force F(r) = k(r — RL) with k= ;=677

(eq. and with r = Ry at 1 = 0 we get:
63
(r—Rp) = Asin (@t)
A being the maximal fluctuation in size of the universe, and

3 3

(r—Ryp) = A(;—M cos ((;—Mt)
is the expansion rate of the universe, and
; 6 E
(r—Rp)= _AW sin (G—Mt)

is the acceleration of the expansion of the universe. When r < Ry, the expansion and the acceleration
are both positive, but with a negative rate of the acceleration. This is a common feature of periodic
motion. When the radius of the universe will reach its horizon Ry, the expansion will continue but
at a decelerating rate until the universe reaches its maximum size Ry + A and stops expanding. Then
the inverse movement will take place.

A and ¢ are two unknowns which can be determined by the values of the expansion rate (Hubble-
Lemaitre constant = 70 km/s/Mps) and the value of the acceleration of the universe expansion.
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14. Conclusion

The present model for gravitation is not equivalent to general relativity in that the field ' determines
the geometry and plays a central role. The existence of a short range repulsive potential leads to very
interesting results, especially with regard to black holes which should not exist but instead would be
"cores" or "compact bodies" that have a finite size. The current that generates the gravitational forces
is the Energy-Impulsion tensor and this is a natural consequence of the invariance of the action under

o . . 2002 . . .
the group of translations in space-time. The repulsive — Grjzw potential term is absent in general

relativity. For that reason and in order to explain the acceleration of the expansion of the universe,
the influence of a hypothetical ‘dark energy’ was invoked in GR. Our model does not need ‘dark energy’

, . . ) . 2002 ,
to explain the acceleration of the expansion of the universe. The repulsive — S4= potential tends to open
- ~ r

the orbit of Mercury and this contributes to fix the advance the perihelion to 42.3” per century.
This is in good agreement with the measured value of 43”. The expansion of the universe could
be a consequence of the universe being considered as a core with a natural pulsation frequency of
one cycle per 278 10° years. As such the universe would radially oscillate around an equilibrium
point instead of being originated from a ‘Big Bang". The speed distribution in rotating galaxies arms
could also be calculated in the new theoretical model, possibly taking into account a “Lorentz” force.
What's more, we can show that this "Lorentz" force acts in the right centripetal direction without
maybe having to rely on "dark matter" to do the job. Quantum gravity should have the massless
spin 2 graviton for the propagator of the interaction and this quantification could be the subject of
further work. Rotating cores are also a topic for further study.
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