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Abstract
Gravitation is introduced as a gauge field that couples to the impulsion in the Lagrangian approach to the
classical mechanics. The equations of motion in a central static field yield an amazing result: a repulsive
gravitational potential appears at short distance. As a consequence black holes would have a stable and
finite size, thus eliminating gravitational singularities. The expansion of the universe and its acceleration
could be explained without recourse to a hypothetical dark energy.

1. Introduction
A short historical review
After Einstein produced the famous General Relativity (GR) theory for gravitation, several theories
were then also proposed to either improve, reinterpret or supplement GR. The aim of these efforts
was to quantify gravitation and explain later discoveries like the expansion of the universe. Several of
these theories are based on the non-zero torsion of the space time. Elie Cartan did develop a model
where torsion would be generated by angular momentum Scholz 2018; Hehl and Obukhov 2007
Blagojevis and Hehl 2012: Cartan associates to each closed infinitesimal contour a rotation (which
expresses curvature) and a translation (which expresses torsion). In Cartan’s mind the rotation can
be represented by a vector and the translation by a torque. Tetrad formalism, teleparallel gravity,
Weitzenböck and Möller theories are shown to be equivalent to GR in reference Arcos and J G Pereira
2005, and reference Schucking 2008 shows that the Schwartzschild metric can have an interpretation
of teleparallelism in the Pound-Rebka experiment. An Introduction to teleparallel gravity is given in
reference Lurie 2013 where curvature =0 and torsion is the gravitational field strength. In consequence,
there are no geodesics in Teleparallel Gravity, only force equations quite analogous to the Lorentz
force equation of electrodynamics. The authors expected this result by because, like electrodynamics,
Teleparallel Gravity is also a gauge theory. Gauge theories for gravitation are treated in Hayashi
and Nakano 1967 in a formal mathematical frame, and in Arcos and J G Pereira 2005; Kleinert 2010
where a mathematical formalism in which torsion and curvature can be exchanged via a supergauge
symmetry leads to the GR equations. Translation gauge potentials Ivanenko and Sardanashvily
1987 meet Cartan’s idea of the spin of matter being the source of torsion: The gauge gravitation
theory based on the relativity and equivalence principles reformulated in fibre bundle terms is the
gravitation theory with torsion whose source is the spin of matter. “Since translation gauge potentials
fail to be utilized for describing a gravitational field, a question on their physical meaning arises.”
“Therefore, translation gauge potentials may be responsible for weaker forces than gravity as discussed
by some of the authors.” Goldstonic supergravity, supergroups, supertransformations, superspace,
supersymmetries, superfunctions etc. are examined in a mathematical frame in this paper. The
expansion of the universe and its acceleration are explained in the framework of GR by the action of
a phantom dark energy Peebles and Ratra 2002; Dutta and Scherrer 2009 in the ΛCDM model.
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The present work
This is a new approach on gravitation. In the opposition to GR it is defined as a gauge theory
with the gauge group of translations. The source is the energy impulsion tensor that is conserved
which results from the invariance of the Lagrangian under the group of translations. Gauge theories
introduced by Hermann Weyl postdate GR and are now a successful mathematical formalism in
providing a unified framework to describe the quantum field theories of electromagnetism, the weak
force and the strong force. Here our gauge symmetry group of translations is abelian as is the U(1)
group for electromagnetism and this makes the mathematical treatment simpler. The graviton is
defined as a massless spin 2 boson. At this stage one can notice that abelian gauge theories have
massless gauge bosons with the infinite range.

We will follow the classical Lagrangian approach where space-time is distorted by the pres-
ence of a gravitational field.This distortion will induce a change into the metric. At infinite dis-
tance from massive bodies where the gravitational field tends to zero, the metric is Minkovskian

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

. We will begin with the introduction of the gravitational potential in space-

time and into the metric. With the Pound-Rebka effect as a first result. Then we will introduce
the gravitational potential into the Lagrangian that leads to the classical equations of motion. This
will lead to the equations of motion of a body in a gravitational field. The action change under
gauge transforms of the gravitational field is evaluated, as well as the symmetry properties of the
gravitational potential. The equations of the field are thus derived. We can then apply the equations
of motion in a central static field, beginning with the deflection of light by a massive body, the sun in
this case. Newton’s law is then demonstrated, as is the principle of equivalence. The non-relativistic
and relativistic equations of motion in a central static field are expressed in polar coordinates. The
precession of Mercury’s perihelion is calculated which fits well to the measured value. The equations
also show that black holes must have a finite size, when the attractive and repulsive gravitational
forces are in equilibrium. Some considerations on black hole properties follow, and also on the
accelerated expansion of the Universe.

2. The gravitational field Γ
µ
ν

Time-space, vectors, metric, scalars and so on
In our 4-dimensional space-time, we can meet vectors (ex: xµ), covectors (ex: pµ), scalars that are
the contraction of a vector on a covector: xµaµ = (x|a). A scalar can also be produced from two
vectors xµ and yν with the help of the metric gµν: xµgµνyν and conversely xµgµνyν with two
covectors xµ and yν , gµν being the inverse matrix of gµν. We can consider that xµgµν is a vector
xν that contracts with yν In the free (free means that there is no gravitation) space-time, the metric

is ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 the Minkovskian metric where ηµν = ηµν is its own inverse.

Now a word about the contraction operator that creates a scalar from a vector and a covector:
Let the vector be xµ =

(
x0 x1 x2 x3) and the covector be aν =

(
a0 a1 a2 a3

)
. The scalar

(x|a) is made by multiplying x0 with a0, x1 with a1 and so on and then taking the sum. It could have
been x0a1 + x1a2 + x2a3 + x3a0 or any other mix of indices but it is not. The operator governing this
contraction is the Kronecker δνµ that will make that x0 matches with a0, x1 with a1 and so on. Thus,
we write: (x|a) = xµδνµaν Also xµgµνyν = xµδµλgλρδνρyν : here we have a double contraction on
µ and ν. All this may seem trivial, but we will demonstrate that the gravitational field acts on the
contraction operator δνµ in the following way: δνµ becomes δνµ + Γνµ when acting on the impulsion
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pν. For instance, this modifies the differential of the action

dS = pµdxµ to dS′ = pµ(δµν + Γ
µ
ν )dxν = pµdxµ + pµΓµν dxν

. This can be compared to the action that includes an electromagnetic field Aµ: dS′ = pµdxµ+eAµdxµ
Mass m will also be a subject to the change in a gravitational field. One had m2 = pµηµνpν or
m2 = E2

c4 − p2 in the free space. In a gravitational field pµ = δνµpν becomes

pµ = (δνµ + Γνµ )pν and m′2 = pλ(δλµ + Γλµ)ηµν(δρν + Γ
ρ
ν )pρ ≃ m2 + 2pµΓρνηρνpν + ΓΓ terms.

This explains the slight mass gain of a body moving in a central static potential. We can also write:
m2 = pλgλρpρ with the metric in a gravitational field becoming gλρ = (δλµ + Γλµ)ηµν(δρν + Γ

ρ
ν ) a

metric for covectors. And gλρ = (gλρ)−1 = (δµλ − Γ
µ
λ )ηµν(δνρ − Γνρ ) would be the metric for vectors.

Developing to the first order in Γ we get: gλρ = ηλρ + 2Γλµηµρ and gλρ = ηλρ − 2Γµλ ηµρ

It will be shown later that Γµν is symmetrical in µ and ν and can be made diagonal by a suitable
change of coordinates. This change leaves δµν invariant. Then gλρ can be written, to the first order
in Γ :

gλρ =


1 + 2Γ0

0 0 0 0
0 −1 − 2Γ1

1 0 0
0 0 −1 − 2Γ2

2 0
0 0 0 −1 − 2Γ3

3


And

gλρ =


1 − 2Γ0

0 0 0 0
0 −1 + 2Γ1

1 0 0
0 0 −1 + 2Γ2

2 0
0 0 0 −1 + 2Γ3

3


The Pound and Rebka experiment
The Pound and Rebka experiment shows how the time is modified by the gravitation: thus only Γ0

0
is acting and dt2 becomes dt2(1 − 2Γ0

0 ). The scalar time lapse |dt| becomes |dt|(1 − Γ0
0 ). Let us write Γ

for Γ0
0 . The Figure 1 shows the layout of the experiment:

Figure 1. Pound-Rebka experiment

At point 1, dt1 = (1 − Γ1)dt. At point 2, dt2 = (1 − Γ2)dt, so that:

dt1
dt2

=
1 − Γ1
1 − Γ2

≃ 1 − Γ1 + Γ2 (1)

dt1
dt2

was measured by Pound and Rebka in 1960 to be equal to: 1 − GM
c2 ( 1

r1 − 1
r2 ). Which allows us to

identify Γ0
0 to GM

rc2 . Here M is the earth mass, G the gravitational constant, c the speed of light and
r1,2 the distance of points 1 and 2 to the center of Earth.
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3. Equations of motion in the gravitational field Γ
µ
ν

Classical mechanics tells us that the trajectory of a body between two points A and B is the path
where the integral of the action dS is minimal, with dS = pµdxµ and pµ being the impulsion of the
body. The occurrence of a field Γ

µ
ν will influence dxµ and generate the equations of motion of a

body in a gravitational field.
Let us consider the Lagrangian equation of motion, seen from a geometrical point of view. A

small deviation from the trajectory between the two points A and B will not change the action to
the first order:

Figure 2. Action variation∫
I
pµ dxµ =

∫
II

pµ dxµ

or:
∮

I,−II pµ dxµ = 0 which is equivalent to:
∫∫

A(∂µpν − ∂νpµ)dS = 0. Thus, ∂µpν − ∂νpµ = 0

Multiplying by vµ = dxµ
dt , one gets: dxµ

dt
∂pν
∂xµ − vµ∂νpµ = 0. Since ∂νvµ = 0 and dxµ

dt
∂pν
∂xµ = d

dt pν
we get: d

dt pν − ∂
∂xν (vµpµ) = 0

But vµpµ is the Lagrangian L, defined as the time derivative of the action:

S =
∫

pµ dxµ =
∫

pµvµ dt =
∫

L dt.

We can write the equation of motion as:

d
dt

pν − ∂

∂xν
L = 0

or d
dt

∂L
∂vν − ∂

∂xνL = 0 with pν = ∂L
∂vν

When the gravitational field Γ
µ
ν is introduced we get the following action: S =

∫
pµ(δµν +Γµν ) dxν.

Thus S =
∫

pµ(δνµ + Γνµ )vν dt =
∫
L dt which implies

L = pµ(δµν + Γ
µ
ν )vν.

Equations of motion
1st term:

d
dt

∂L
∂vν

=
d
dt

(pν + Γ
µ
ν pµ) =

d
dt

pν + pµ
d
dt
Γ
µ
ν + Γ

µ
ν

d
dt

pµ (2)

=
d
dt

pν + pµvρ
∂Γ

µ
ν

∂xρ
+ Γ

µ
ν vρ

∂pµ
∂xρ

(3)
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2d term:
∂L
∂xν

=
∂

∂xν
(pρvρ) +

∂

∂xν
(pµΓµρ vρ) (4)

We simplify the notation by: ∂ν ≡ ∂
∂xν . Then, since ∂νvρ = 0

∂νL = vρ∂νpρ + pµvρ∂νΓµρ + vρΓµρ ∂νpµ (5)

and assembling the simplified terms in the Lagrange equation, we get:

vµ∂µpν + Γ
µ
ν vρ∂ρpµ = pµvρ(∂νΓ

µ
ρ − ∂ρΓ

µ
ν ) + vρΓµρ ∂νpµ + vµ∂νpµ (6)

Or:
vµ(∂µpν + ∂νpµ) + vρ(Γµν ∂ρpµ + Γ

µ
ρ ∂νpµ) = pµvρ(∂νΓ

µ
ρ − ∂ρΓ

µ
ν ) (7)

and finally

vµ(∂µpν − ∂νpµ) = vρ[∂ν(pµΓµρ ) − ∂ρ(pµΓµν )]

⇔ vρ(∂ρpν − ∂νpρ) = vρ[∂ν(pµΓµρ ) − ∂ρ(pµΓµν )]. (8)

The equation (8) is satisfied if

∂ρ(pν + pµΓµν ) − ∂ν(pρ + pµΓµρ ) = 0. (9)

Temporal and spatial fields
Let us define γν ≡ pµΓµν then, the equation (8) can be rewritten as:

vρ∂ρpν − vρ∂νpρ = vρ(∂νγρ − ∂ργν). (10)

Or, with vρ∂ρ = d
dt and vρ∂νpρ = ∂νvρpρ = ∂νL as:

d
dt

pν =
∂L
∂xν

+ vρ(∂νγρ − ∂ργν). (11)

If no other extra fields are present, ∂L
∂xν can be ignored and for ν = 0 one gets:

d
dt

p0 = vi(∂tγi − ∂iγ0) ; i = 1, 2, 3. (12)

Or, if we define Ei ≡ ∂iγ0 − ∂tγi we get:

d
dt

p0 = −viEi. (13)

For ν = 1, 2, 3 noted as ν = i:

d
dt

pi = vρ(∂iγρ − ∂ργi) ; ρ = 0, 1, 2, 3. (14)

For ρ = 0, v0 ≡ 1 and we get: 1(∂iγ0 − ∂tγi) = Ei again. For ρ = 1, 2, 3 noted as ρ = j one has:

vj(∂iγj − ∂jγi) = #»v ×
#     »

rot #»γ . (15)

If we define
#»H ≡

#     »

rot #»γ we finally get:

d
dt

#»p =
#»E + ( #»v × #»H). (16)
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4. Symmetry of Γνµ
Γνµ is a mixed co and contravariant tensor (its product with pνvµ contributes to the Lagrangian
as a scalar). This 4 × 4 tensor can have a symmetric and antisymmetric parts. We show that its
antisymmetric part would correspond to a transform where the 4-length is preserved and there is no
distortion.

If dxµdxνηµν = dx2 is the 4-length of the vector dx, then after Γ operation the length of the
vector will become:

(dxµ + Γ
µ
λ dxλ)(dxν + Γνρ dxρ)ηµν =

= dxµdxνηµν + dxµηµνΓ
ν
ρ dxρ + dxνηµνΓ

µ
λ dxλ + ηµνΓ

µ
λ Γνρ dxλdxρ

To the first order in Γ , and if the length is preserved, we would get: dxµdxνηµν = dxµdxνηµν +
dxνΓνρdxρ + dxµΓµρdxρ. Switching the dummy index ν to µ in the second term 2Γµρdxρdxµ = 0
and by symmetry of dxρdxµ, Γµρ should be antisymmetric. The symmetrical part of Γνµ is ηµλΓ

νλ

and also ηµλ and Γνλ both are symmetrical. Thus Γµν = Γνµ The symmetry of µ and ν in Γνµ ensures
that it will produce no rotation (or more generally conservation of the 4-length) but it will produce
only the distortion of space time. As a consequence Γνµ will have 10 components and Γνµ could
possibly correspond to a spin 2 graviton. Feynman 1995

To make it visual, consider the following Figures 3 and 4. On Fig. 3, the symmetrical Γ2
1 = Γ1

2
creates a distortion in the 1, 2 plane.

#»

1′ +
#»

2′ =
#»
1 +

#»
2 Γ2

1 +
#»
2 +

#»
1 Γ1

2 = (
#»
1 +

#»
2 )(1 + Γ2

1 )

Figure 3. distortion

If Γ2
1 = −Γ1

2 then we would have a rotation instead of distortion, and as a consequence Γ0
0 would

also be = 0 instead of GM
rc2 .

#»

1′ +
#»

2′ =
#»
1 +

#»
2 Γ2

1 +
#»
2 +

#»
1 Γ1

2 =
#»
1 +

#»
2 Γ2

1 +
#»
2 − #»

1 Γ2
1 .

Figure 4. rotation

5. The equations of field
We look for an action that is a scalar, gauge invariant and that includes only the Γνµ terms. Such
an action will be noted as Sf . Let us start from 11: d

dt pν = ∂L
∂xν + vρ(∂νγρ − ∂ργν). The term
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(∂νγρ − ∂ργν) is invariant under gauge transform Γ
µ
ν → Γ

µ
ν + ∂νΦ

pµ . The action term
∫

pµΓµν dxν

is also invariant under the same gauge transform.
Expanding and neglecting ∂L

∂xν (no other potential but gravitational is present), we get:

d
dt

pν = vρpµ (∂νΓ
µ
ρ − ∂ρΓ

µ
ν )︸ ︷︷ ︸

I

+vρ (Γµρ ∂νpµ − Γ
µ
ν ∂ρpµ)︸ ︷︷ ︸

II

(17)

The term I is invariant under the gauge transform Γ
µ
ν → Γ

µ
ν + ∂ν Gµ. The gauge transform leaving

invariant γν and I must satisfy ∂νΦ
pµ = ∂ν Gµ. The scalar term is (∂νΓ

µ
ρ − ∂ρΓ

µ
ν )2 and it is defined

as:

(∂νΓ
µ
ρ − ∂ρΓ

µ
ν )gναgρβgµγ(∂αΓ

γ
β − ∂βΓ

γ
α ). (18)

We define the action of the field as:

Sf = α

∫
(∂νΓ

µ
ρ − ∂ρΓ

µ
ν )2 dΩ. (19)

With α an arbitrary constant, dΩ =
√−g dVdt, V is the spatial volume and g = det(gij) = −1 + 2TrΓ , Γ

is the Γ
µ
ν matrix. The action is now completed with the field – matter interaction term:

S =
∫

pµΓµν vν dΩ + α

∫
(∂νΓ

µ
ρ − ∂ρΓ

µ
ν )2 dΩ (20)

where pµ stands for the density of impulsion.
How does the entire action vary under a variation of the potential Γ ?

δS =
∫

δ[pµvν Γ
µ
ν + α (∂νΓ

µ
ρ − ∂ρΓ

µ
ν )2 (1 − TrΓ )]dV dt. (21)

The term in α is equal to: ([∂νΓ
µ
ρ −∂ρΓ

µ
ν ](ηνα+2ηνλΓαλ )(ηρβ+2ηρκΓβκ )(ηµγ−2ηµλΓ

λ
γ )[∂αΓ

γ
β−

∂βΓ
γ
α ] (1 − TrΓ )).
The variation of this product of six terms can be much simplified if we consider only the first

order terms in Γ in the product of gνα = ηνα and 1 − TrΓ = 1. Thus, we get:

δS =
∫

pµvν δΓ
µ
ν + αδ[(∂νΓ

µ
ρ − ∂ρΓ

µ
ν ) (∂νΓρµ − ∂ρΓνµ )] dVdt (22)

or:

δS =
∫

pµvν δΓ
µ
ν + 2α(∂νΓ

µ
ρ − ∂ρΓ

µ
ν ) δ(∂νΓρµ − ∂ρΓνµ ) dVdt (23)

where ∂ν = ηνµ∂µ.

δS =
∫

pµvν δΓ
µ
ν + 2α[(∂νΓ

µ
ρ − ∂ρΓ

µ
ν )∂νδΓρµ (24)

−(∂νΓ
µ
ρ − ∂ρΓ

µ
ν )∂ρδΓνµ ] dVdt. (25)

We swapped ∂ and δ, and by swapping ρ and ν we get:

δS =
∫

pµvν δΓ
µ
ν + 4α(∂ρΓ

µ
ν − ∂νΓ

µ
ρ )∂ρδΓνµ dVdt. (26)
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The term in 4α is integrated by parts:∫
(∂ρΓ

µ
ν − ∂νΓ

µ
ρ )∂ρδΓνµ dVdt (27)

= −
∫

∂ρ(∂ρΓ
µ
ν − ∂νΓ

µ
ρ ) δΓνµ dVdt

+
∫

(∂ρΓ
µ
ν − ∂νΓ

µ
ρ ) δΓνµ dSρ. (28)

The term
∫

(∂ρΓ
µ
ν − ∂νΓ

µ
ρ ) δΓνµ dSρ = 0 since δΓνµ = 0 in the time limits and (∂ρΓ

µ
ν − ∂νΓ

µ
ρ ) = 0 at

∞. The field strength is 0 on the boundary at ∞.
Thus we obtain:

δS =
∫

pµvν δΓ
µ
ν − 4α∂ρ(∂ρΓ

µ
ν − ∂νΓ

µ
ρ ) δΓνµ dVdt. (29)

By cancelling the variation of S and swapping µ and ν in the first term we have:

pνvµ − 4α∂ρ(∂ρΓ
µ
ν − ∂νΓ

µ
ρ ) = 0. (30)

One corollary of eq. 30 is that the divergence of the energy impulsion tensor (pνvµ) is equal to zero.
Indeed, swapping the dummy indices ν and ρ, we get:

∂ν(pνvµ) = 4α(∂ν∂ρ∂ρΓ
µ
ν − ∂ρ∂ν∂νΓ

µ
ρ )

= 4α(∂ν∂ρ∂ρΓ
µ
ν − ∂ν∂ρ∂ρΓ

µ
ν ) = 0. (31)

Now let us evaluate 4α. If the source current pµvν is generated by a mass with rest density ρ
pµvν = ρ δν0 δ

0
µc2 and from (30) we get:

ρ c2 = 4α[∂ν∂νΓ0
0 − ∂ν∂tΓ

0
ν]. (32)

With the mass density ρ at rest, the field Γ0
ν must be static: ∂tΓ0

ν = 0 and ρ c2 = 4α∆Γ0
0 with ∆ the

Laplacian. A solution is: Γ0
0 = 1

4π
∫ c2ρ

4αr dV which for a mass M =
∫
ρ dV and since Γ0

0 = GM
rc2 , we get:

16πα =
c4

G
[m

kg
s2

] → 4α =
c4

4πG
. (33)

Eq. 30 can be rewritten:

∂ρ(∂ρΓ
µ
ν − ∂νΓ

µ
ρ ) =

4πG
c4

pνvµ [m−2] (34)

where pν is the density of impulsion.
Depending on the values of µ, ν we have the following field equations:
1) µ, ν =0; p0v0 = ρc2

4πG
c2

ρ = ∂λ∂
λΓ0

0 − ∂λ∂tΓ
0
λ [m−2] (35)

and if the field is static, we get:

∆Γ0
0 =

4πG
c2

ρ → Γ0
0 =

GM
rc2

(36)
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with M=
∫
ρ dV . The equations of motion in a central static field will be considered in the next

chapter.
2) Let µ,ν ̸= 0 are denoted by i, j, then for v ≪ c, p ≃ ρv we get:

4πG
c4

ρvivj = ∂λ(∂λΓ
j
i − ∂iΓ

j
λ) [m−2]. (37)

This is symmetric in i and j on the left-hand-side and can be made symmetrical in i and j on the
right-hand-side because Γ

j
i = Γ i

j and by a kind of “Lorentz” condition: ∂λΓ j
λ = 0.

Gravitational waves
Equation (34) can be rewritten assuming the above “Lorentz condition”: ∂λΓ j

λ = 0 as:

∂ρ∂ρΓ
µ
ν =

4πG
c4

pνvµ. (38)

In the vacuum:
∂ρ∂ρΓ

µ
ν = 0 = (

1
c2
∂t∂t −

∑
i
∂i∂i)Γ

µ
ν

the field Γ
µ
ν (the massless graviton) is a wave propagating at speed of light. It can be seen as a massless

particle that propagates a gravitational field.

6. The test of deflection of light by the sun
At this point we have enough results to perform the first test of this new theory, it is a kind of "stop
and go" procedure as in the following scheme:

The gravitational potential of the sun is considered as central and static:

Γ
µ
ν = δ

µ
0 δ0

ν Γ0
0 ≡ Γ =

GM
rc2

. (39)

The impulsion of the photon is #»p = h̄
#»

k and
#»

k = (ω, k0∞, 0, 0) = (ω,ω, 0, 0) in the x, y plane shown

Figure 5. Deflection of light

on Fig. 5 and #»v = (1,−1, 0, 0) with c = 1; in the following calculations we also take c = 1 = h̄ for
clarity.

With the symbol k̇ = d
dt k eq. 11 gives:

˙kν = vρ [∂ν(kµΓµρ ) − ∂ρ(kµΓµν )] (40)
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With Γ
µ
ν defined by eq. 39, it gives rise to:

˙kν = v0∂ν(k0Γ ) − vρ∂ρ(kµΓµν ) (41)

For k̇0 : k̇0 = v0∂t(k0Γ ) − vρ∂ρ(k0Γ ); ρ = (1, 2, 3)

k̇0 = ∂t(k0Γ ) + ∂1(k0Γ ) = Γ∂tk0 + k0∂tΓ + Γ∂1k0 + k0∂1Γ

since ∂tΓ = 0 , k̇0 = Γ (∂tk0 + ∂1k0) + k0∂1Γ .
With x = x∞ − ct = x∞ − t (with c=1), → ∂t = −∂1 (where ∂1 ≡ ∂x). Thus,

k̇0 = k0∂1Γ (42)

For k̇i: k̇i = v0∂i(k0Γ ) − vρ∂ρ(kµΓµi ) = ∂i(k0Γ ). Remembering that for v0 = 1, Γ i
µ = 0 ; i ̸= 0.

Along the coordinate y = 2, k̇2 = ∂2(k0Γ ) = ∂y(k0Γ ) = k0∂2Γ , since ∂2k0 = 0. Thus:

k̇2 = k0∂2Γ (43)

With k̇0 = k0∂1Γ the time derivation of k̇2 reads

k̈2 = ∂2
˙(k0Γ ) = ˙(k0∂2Γ ) = k̇0∂2Γ + k0∂2Γ̇ → k̈2 = k0∂1Γ∂2Γ + k0∂2(vj∂jΓ ).

The first term is in ∂Γ2 and can be neglected versus ∂Γ (Γ ≈ 10−6 at surface of the sun). Thus,
k̈2 = k0∂2(v0∂tΓ + v1∂1Γ ) , with v0 = 1, v1 = −1 and ∂t = −∂1. This leads to:

k̈2 = k0∂2(−∂1Γ − ∂1Γ ) = −2k0∂1∂2Γ . (44)

Since Γ = GM
r = GM√

x2+y2 with c = 1

∂2Γ =
−yGM

(x2 + y2)3/2

∂1∂2Γ =
3xyGM

(x2 + y2)5/2

then

k̈2 = −6k0
xyGM

(x2 + y2)5/2 . (45)

With k̈2 = d
dt k̇2 = dx

dt
dk̇2
dx and dx

dt = −1 we get k̇2 = −
∫

k̈2 dx. Thus

k̇2 = 6k0GM
∫ xy

(x2 + y2)5/2 dx. (46)

Integrating again with dx = −dt we obtain:

k2 = 2k0GMy
∫ 0

∞

1
(x2 + y2)3/2 dx = −2k0

GMy
y2 . (47)

Thus, k2 = −2k0
GM

y which for y = R leads to

k2
k0

=
−2GM

R
= tan(α) ≃ α (48)

still with c = 1. Reintroducing c we get a total deviation as 2α = 4GM
Rc2 . This corresponds to the

measured value and is the first succesful test of the validity of this new gravitational model.
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Figure 6. Total deviation

7. Equation of motion in a central static field

The basic assumptions of a central static field are: The field Γ
j
i = Γ0

0 δ
j
0 δ

0
i , Γ0

0 ≡ Γ ∂tΓ = 0 Γ̇ = vj∂jΓ ,
and Γ = GM

rc2 .
Starting from eq. 11

˙pν = vρ[∂ν(pµΓµρ ) − ∂ρ(pµΓµν )].

For i = 1, 2, 3 one has:

ṗi = v0∂i(p0Γ ) − vj∂j(p0Γ
0
i ) = ∂i(p0Γ ). (49)

For i=0:

ṗ0 = v0∂t(p0Γ ) − vi∂i(p0Γ ). (50)

Thus:

ṗi = ∂i(p0Γ ) = p0∂iΓ + Γ∂ip0 (51)

and

ṗ0 = −vi∂i(p0Γ ) + Γ∂tp0. (52)

We now calculate p̈i:

p̈i = ˙(p0∂iΓ + Γ∂ip0) = ṗ0∂iΓ + p0 ˙∂iΓ + Γ̇∂ip0 + Γ∂iṗ0. (53)

Then replacing ṗ0 in eq. 53 we have:

p̈i = (−vj∂j(p0Γ ) + Γ∂tp0)∂iΓ︸ ︷︷ ︸
I

+ (54)

(p0∂i(vj∂jΓ )︸ ︷︷ ︸
II

+ (55)

vj∂jΓ∂ip0︸ ︷︷ ︸
III

+ (56)

Γ∂i(−vj∂j(p0Γ ) + Γ∂tp0)︸ ︷︷ ︸
IV

. (57)
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The term I + IV gives: ∂i[Γ (−vj∂j(p0Γ ) + Γ2∂tp0], and the term II + III gives: ∂i[p0vj∂jΓ ], so thus,

p̈i = ∂i[p0vj∂jΓ + Γ2∂tp0 − Γvj∂j(p0Γ )] (58)

= ∂i[p0vj∂jΓ + Γ2∂tp0 − Γvj(p0∂jΓ + Γ∂jp0)] (59)

= ∂i[(p0vj∂jΓ )(1 − Γ ) + Γ2(∂tp0 − vj∂jp0)] (60)

Also ∂tp0 − vj∂jp0 = ṗ0 and eq. (52) gives:

ṗ0 = Γ∂tp0 − Γvi∂ip0 − vip0∂iΓ = Γ ṗ0 − vip0∂iΓ . (61)

Then ṗ0(1 − Γ ) = −p0vi∂iΓ or ṗ0 = −p0vi∂iΓ
1−Γ .

Replacing in eq. (60) we get:

p̈i = ∂i

[
(p0vj∂jΓ )(1 − Γ ) +

Γ2

1 − Γ
(−p0vj∂jΓ )

]
(62)

Or:

p̈i = ∂i

[
(p0vj∂jΓ )

1 − 2Γ
1 − Γ

]
; i, j = 1, 2, 3 (63)

Non relativistic equations of motion :
For v ≪ c and no external field, p0 ≃ mc2 and pi = δikvkm = mvi still for i, j = 1, 2, 3
Equation 63 becomes :

p̈i = mc2vj∂i

[
1 − 2Γ
1 − Γ

∂jΓ

]
+ mc2∂ivj

[
1 − 2Γ
1 − Γ

∂jΓ

]
(64)

or

mv̈i = mc2vj
[

1 − 2Γ
1 − Γ

∂i∂jΓ −
∂iΓ∂jΓ

(1 − Γ )2

]
+ mc2∂ivj

[
1 − 2Γ
1 − Γ

∂jΓ

]
(65)

This results in:

v̈i
c2

= vj 1
(1 − Γ )2

[(1 − 3Γ + 2Γ2)∂i∂jΓ − ∂iΓ∂jΓ ] + ∂ivj
[

1 − 2Γ
1 − Γ

∂jΓ

]
(66)

Equations of motion in polar coordinates r,φ
Let us now evaluate the equation of motion (66) of a body in the central static gravitational field Γ ,
with Γ = GM

c2r and ∂Γ
∂φ = 0 in the polar coordinates r, φ.

In the reference frame #»e , #»n , #»n = d #»e
dφ and #»e = − d #»n

dφ . Thus, #̇»e = #»n φ̇ and #̇»n = − #»e φ̇ The

velocity is given by #»v = ṙ #»e + rφ̇ #»n . The gradient of a scalar f is
#»

∂ f = ∂f
∂r

#»e + 1/r ∂f
∂φ

#»n .

Let us first evaluate the last term ∂ivj
[

1−2Γ
1−Γ ∂jΓ

]
in the equation 66, so that we have

∂ivj = ∂r(ṙ #»ej + rφ̇ #»nj ) #»ei +
1
r
∂φ(ṙ #»ej + rφ̇ #»nj ) #»ni = φ̇ #»nj

#»ei (67)

and

∂jΓ = ∂rΓ #»ej +
1
r
∂φΓ #»nj = −GM

c2r2
#»ej . (68)
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Figure 7. polar coordinates

This term contains the factor #»ej
#»nj

#»ei = 0 since ( #»e | #»n ) = 0. Thus, when developing eq. 66 we are left
with two terms: Term I = (1 − 3Γ + 2Γ2)vj∂j∂iΓ )︸ ︷︷ ︸

I

and term II =(−vj∂jΓ∂iΓ )︸ ︷︷ ︸
II

.

Developing them we have (we leave the arrow on top of e and n for easier identification)
Term I: The calculation of vj∂j∂iΓ gives rise to

vj∂j∂iΓ = (ṙ #»ej + rφ̇ #»nj |
2GM
c2r3

#»ej
#»ei −

GM
c2r3

#»nj
#»ni ). (69)

Indeed:

∂j∂iΓ =
∂(∂iΓ )
∂r

#»ej + 1/r
∂(∂iΓ )
∂φ

#»nj = ∂r(
−GM
c2r2

#»ei ) #»ej + 1/r ∂φ(
−GM
c2r2

#»ei ) #»nj (70)

=
2GM
c2r3

#»ei
#»ej −

GM
c2r2 (∂r #»ei ) #»ej + 1/r

(
∂φ(

−GM
c2r2 ) #»ei

#»nj −
GM
c2r2 (∂φ #»ei ) #»nj

)
=

2GM
c2r3

#»ei
#»ej −

GM
c2r3

#»ni
#»nj (71)

since ∂iΓ = ∂rΓ #»ei + 1
r ∂φΓ #»ni , ∂rΓ = −GM

c2r2 and ∂φΓ = 0.
Then eq. 69 becomes:

vj∂j∂iΓ = ṙ
2GM
c2r3 ( #»ej | #»ej ) #»ei − ṙ

GM
c2r3 ( #»ej | #»nj ) #»ni + rφ̇

2GM
c2r3 ( #»nj | #»ej ) #»ei − rφ̇

GM
c2r3 ( #»nj | #»nj ) #»ni (72)

Since ( #»e | #»e ) = ( #»n | #»n ) = 1 and ( #»e | #»n ) = 0 we get:

vj∂j∂iΓ =
2ṙGM
c2r3

#»ei − φ̇
GM
c2r2

#»ni

And term I becomes (with Γ = GM
c2r )

(1 − 3Γ + 2Γ2) vj∂j∂iΓ

= (2ṙ
GM
c2r3 − 3a

GM
c2r

2ṙGM
c2r3 + 2

G2M2

c4r2
2ṙGM
c2r3 ) #»ei

+ (−φ̇
GM
c2r2 + 3

GM
c2r

φ̇
GM
c2r2 − 2

G2M2

c4r2 φ̇
GM
c2r2 ) #»ni . (73)
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Term II:

(−vj∂jΓ∂iΓ ) = −(ṙ #»ej + rφ̇ #»nj |
−GM
c2r2

#»ej )
−GM
c2r2

#»ei = −ṙ
G2M2

c4r4
#»ei . (74)

Collecting both terms I + II we get:

#̈»v
c2

=
1

(1 − GM
c2r )2

[(
2ṙ

GM
c2r3 − 7ṙ

G2M2

c4r4 + 4ṙ
G3M3

c6r5

)
#»e +

(
−φ̇

GM
c2r2 + 3φ̇

G2M2

c4r3 − 2φ̇
G3M3

c6r4

)
#»n
]

(75)

#̈»v
c2

=
1

(1 − GM
c2r )2

[(
−

˙GM
c2r2 + 7/3

˙G2M2

c4r3 −
˙G3M3

c6r4

)
#»e (76)

+
(
−GM

c2r2 + 3
G2M2

c4r3 − 2
G3M3

c6r4

)
φ̇ #»n

]
. (77)

Since φ̇ #»n = #̇»e we get (we postpone terms in #»e for the subsequent steps)

#̈»v
c2

=
1(

1 − GM
c2r

)2

[(
− ˙GM
c2r2 +

9
3

˙G2M2

c4r3 − 2
3

˙G2M2

c4r3 −
˙2G3M3

c6r4 +
˙G3M3

c6r4

)
#»e (78)

+
(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
#̇»e
]

. (79)

#̈»v
c2

=
1(

1 − GM
c2r

)2
d
dt

[(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
#»e
]

(80)

+
1(

1 − GM
c2r

)2 (−2/3
˙G2M2

c4r3 +
˙G3M3

c6r4 ) #»e . (81)

The last term in 81 can be shown to be equal to:(
−GM

c2r2 + 3
G2M2

c4r3 − 2
G3M3

c6r4

)
#»e

d
dt

1(
1 − GM

c2r

)2

Thus we finally get:

#̈»v
c2

=
d
dt

 1(
1 − GM

c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
#»e

 . (82)

Integrating on time we get the gravitational acceleration (the integration constant can be set to 0
in a suitable reference frame)

#̇»v
c2

=
1(

1 − GM
c2r

)2

(
−GM

c2r2 + 3
G2M2

c4r3 − 2
G3M3

c6r4

)
#»e . (83)
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To the first order in G we find Newton’s law:

#»F = m #̇»v =
−GmM

r2
#»e (84)

and also the Equivalence principle stating that the effects of a gravitational field are identical to an
acceleration given by eq. (83) .

It is interesting to note that the second term in (83) is a repulsive acceleration 3G2M2

c4r3 . It
is usually very small compared to the first term. For instance at the surface of earth, with: M =
6 1024 kg, r = 6, 37 106m, G = 6, 67 10−11 m3/kgs2, c = 3 108m/s, the ratio of the repulsive force to
the main attractive force is 3GM

c2r ≃ 2 10−9. Could this repulsive force be measured ? Possibly by
comparing the velocities of satellites at different altitudes. However, it remains open right now.

Solution in the polar coordinates r,φ
The radial #»e component of the acceleration #̇»v is:

d2r
dt2

− r(
dφ
dt

)2

And its tangential #»n component is:

r
d2φ

dt2
+ 2

dr
dt

dφ
dt

=
1
r

d
dt

(r2φ̇).

We thus get the following set of equations:

d2r
dt2

− r
(

dφ
dt

)2
=

c2
[(

1 − GM
c2r

)−2(
−GM

c2r2 + 3
G2M2

c4r3 − 2
G3M3

c6r4

)]
(85)

and

1
r

d
dt

(r2φ̇) = 0. (86)

Eq. (86) expresses the conservation of angular momentum and gives r2φ̇ = h with h a constant
(m2/s).

Regarding eq. (85), we must first develop d2r
dt2 as follows

dr
dt

=
dr
dφ

dφ
dt

→ ṙ =
h
r2

dr
dφ

r̈ =
dṙ
dφ

dφ
dt

=
h2

r4
d2r
dφ2 − 2

h2

r5 (
dr
dφ

)2. (87)

Eq (85) becomes

h2

r4
d2r
dφ2 − 2

h2

r5 (
dr
dφ

)2 − h2

r3 −
(

1 − GM
c2r

)−2(
−GM

r2 + 3
G2M2

c2r3 − 2
G3M3

c4r4

)
= 0. (88)
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And after multiplying by r2:

h2

r2
d2r
dφ2 − 2

h2

r3 (
dr
dφ

)2 − h2

r
−
(

1 − GM
c2r

)−2(
−GM + 3

G2M2

c2r
− 2

G3M3

c4r2

)
= 0. (89)

Let u = 1
r then du

dφ = − 1
r2

dr
dφ and d2u

dφ2 = − 1
r2

d2r
dφ2 + 2

r3 ( dr
dφ )2. So that we get:

−h2 d2u
dφ2 − h2u +

(
1 − GMu

c2

)−2(
GM − 3G2M2u

c2
+

2G3M3u2

c4

)
= 0. (90)

Or

−h2 d2u
dφ2 − h2u + GM

1 − 2GMu
c2 + G2M2u2

c4 − GMu
c2 + G2M2u2

c4

1 − 2GMu
c2 + G2M2u2

c4

 = 0

Dividing by h2 and writing du
dφ ≡ u′ and rearranging, we get

u′′ + u − GM
h2

(
1 −

GMu
c2

1 − GMu
c2

)
= 0

Or

u′′ + u

(
1 +

G2M2

c2h2

(
1 − GMu

c2

)−1
)

=
GM
h2 . (91)

Eq. (91) is the equation of the orbit of a body around a stationary body of a mass M for non-relativistic
speed.

Relativistic equations of motion of a body in a central static field
We rewrite eq. (63) where we will use the relativistic impulsion #»p and p0:

p̈i = ∂i

[
p0vj 1 − 2Γ

1 − Γ
∂jΓ

]
. (92)

Which with the relativistic impulsion of a body according to Landau and Lifschitz 1964, gives

#»p =
m #»v√
1 − v2

c2

(93)

and

p0 =
mc2√
1 − v2

c2

. (94)

Then, one gets:

p̈i = p0vj∂i

[
1 − 2Γ
1 − Γ

∂jΓ

]
+ (

1 − 2Γ
1 − Γ

∂jΓ )vj∂ip0 (95)
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The first term of eq. (95) is:

mc2√
1 − v2

c2

vj∂i

[
1 − 2Γ
1 − Γ

∂jΓ

]
=

mc2√
1 − v2

c2

vj 1
(1 − Γ )2

[
(1 − 3Γ + 2Γ2)∂i∂jΓ − ∂iΓ∂jΓ

]
(96)

=
mc2√
1 − v2

c2

d
dt

[
1(

1 − GM
c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
#»e
]

(97)

which is obtained in the same way as eq. (82) was obtained from eq. (66).
The second term of eq. (95) is

(
1 − 2Γ
1 − Γ

∂jΓ )vj∂ip0 = (
1 − 2Γ
1 − Γ

)∂jΓ vjmc2 ∂i
1√

1 − v2

c2

Which in polar coordinates reads

∂jΓ vj = (ṙ #»ej + rφ̇ #»nj |∂r(
GM
c2r

) #»ej +
1
r
∂φΓ #»nj ) = −ṙ

GM
c2r2

since ∂φΓ = 0 and ∂i
1√

1− v2
c2

= 1
2c2 (1 − v2

c2 )−3/2∂i(−v2).

But ∂i(v2) = ∂r(ṙ2 + r2φ̇2) #»ei + 1
r ∂φ(ṙ2 + r2φ̇2) #»ni and = 2rφ̇2 #»ei since ∂r(ṙ2) = 0 = ∂φ(φ̇2) which

after combining gives the second term as

−mc2(1 − v2

c2
)−3/2 1 − 2Γ

1 − Γ

1
c2

rṙφ̇2 GM
c2r2

#»ei

= −mc2(1 − v2

c2
)−3/2 1 − 3Γ + 2Γ2

(1 − Γ )2
1
c2

ṙφ̇2Γ #»ei

= − 1
(1 − GM

c2r )2
(
GM
c2r

− 3
G2M2

c4r2 + 2
G3M3

c6r3 )
1
c2

mc2(1 − v2

c2
)−3/2 ṙφ̇2 #»ei

=
1

(1 − GM
c2r )2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4 )
1
c2

mc2(1 − v2

c2
)−3/2rṙφ̇2 #»ei .

and since ∂i(v2) = 2rφ̇2 #»ei , we have: ṙ2rφ̇2 #»ei = ṙ∂i(v2) #»ei = ṙ∂r(v2) #»ei = dv2

dt
#»ei from which it follows

that 1
c2 mc2(1 − v2

c2 )−3/2rṙφ̇2 #»ei = d
dt

mc2√
1− v2

c2

#»ei . Combining the two terms, we get

#̈»p =
d
dt

[
mc2√
1 − v2

c2

1(
1 − GM

c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
#»e
]

.

Then integrating on time gives

#̇»p =
mc2√
1 − v2

c2

1(
1 − GM

c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
#»e . (98)

This can be compared with eq. (83). Let us look at the left hand term of that equation where there
appears the time derivative of the relativistic impulsion. From the definition (93) we evaluate the
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time derivative of the relativistic impulsion as follows.

d
dt

#»p = m

 #̇»v√
1 − v2

c2

+
( #»v | #̇»v ) #»v

c2(1 − v2

c2 )3/2

 . (99)

Note that according to Landau and Lifschitz 1964, when the force is normal to speed we would have

d
dt

#»p = m

 #̇»v√
1 − v2

c2

 (100)

and when the force and speed are co-linear we would get

d
dt

#»p = m

(
#̇»v

(1 − v2

c2 )3/2

)
. (101)

In the following, since forces and speeds can have independent orientations we have to use the general
formula as in eq. (99) for the time derivative of impulsion. Consequently in polar coordinates we
obtain

#̇»v = (̈r − rφ̇2) #»e +
1
r

( ˙r2φ̇) #»n

and

( #»v | #̇»v ) =
1
2

v̇2 =
1
2

(
˙

ṙ2 + r2 ˙
φ2).

Then eqs. 98 and 99 result in the following cases.
Along #»n

1
r ( ˙r2φ̇)√
1 − v2

c2

+
rφ̇(v̇2)

2c2(1 − v2

c2 )3/2
= 0 (102)

and along #»e (dividing both by m)

r̈ − rφ̇2√
1 − v2

c2

+
ṙ v̇2

2c2(1 − v2

c2 )3/2
=

c2√
1 − v2

c2

1(
1 − GM

c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
. (103)

Eq. (102) represents the relativistic conservation of angular momentum, after the following develop-

ment. Multiply both by
√

1 − v2

c2 so that ⇒ ( ˙r2φ̇) = −r2 φ̇ v̇2

2(c2−v2) . Thus,

( ˙r2φ̇)
r2φ̇

= − v̇2

2(c2 − v2)
=

1
2

( ˙c2 − v2)
(c2 − v2)

. (104)

Integrating on time gives (the units are again more physical in this calculation)

ln(r2φ̇) =
1
2

ln (c2 − v2) + κ (105)
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with κ a constant, and after exponentiation and defining eκ ≡ h/c we obtain

r2φ̇ =
√

(c2 − v2) eκ =
√

(c2 − v2) h/c = h

√
1 − v2

c2
. (106)

For v ≪ c one gets the classical form r2φ̇ = h however for the calculation of the precession of the
perihelion of Mercury we will use the relativistic equation eq. 106.

Let us now develop eq. 103 such that it will give us the relativistic relation for the orbit of a body

around a stationary mass M. After multiplication of both terms of (103) by
√

1 − v2

c2 we get:

r̈ − rφ̇2 +
ṙ(v̇2)

2(c2 − v2)
= c2

1(
1 − GM

c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
. (107)

We now expand the first term of (107) so that r depends on φ, using the relations φ̇ = h
r2

√
1 − v2

c2

and ṙ = dr
dφ φ̇ = r′ h

r2

√
1 − v2

c2 Then, let us calculate r̈.

r̈ =
dṙ
dφ

φ̇ =
h
r2

√
1 − v2

c2

 d
dφ

(
h
r2

√
1 − v2

c2
dr
dφ

)

 =

h2

r2

√
1 − v2

c2

(
−2
r3 r′2

√
1 − v2

c2
+ r′

1
r2

d
dφ

√
1 − v2

c2
+

√
1 − v2

c2

r2 r′′
)

r̈ =
h2

r2

(
−2
r3 r′2(1 − v2

c2
) +

r′

r2

√
1 − v2

c2
d

dφ

√
1 − v2

c2
+

1 − v2

c2

r2 r′′
)

(108)

Now
√

1 − v2

c2
d

dφ

√
1 − v2

c2 = 1/2 d
dφ (1 − v2

c2 ) = 1/2 d
dφ (− v2

c2 ) and d
dφv2 = v̇2 dt

dφ = v̇2 r2

h
√

1− v2
c2

.

After replacing by the above in (108) we get:

r̈ = (1 − v2

c2
)(
−2h2r′2

r5 ) − hr′v̇2

2r2c2
√

1 − v2

c2

+ (1 − v2

c2
)
h2r′′

r4 . (109)

The two other terms in (107) are

−rφ̇2 =
−h2

r3 (1 − v2

c2
) (110)

and

ṙv̇2

2c2(1 − v2

c2 )
=

hr′v̇2

2r2c2
√

1 − v2

c2

(111)

using ṙ = dr
dφ

dφ
dt and φ̇ = h

r2
√

1− v2
c2

.
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So the first term of (107) r̈ − rφ̇2 + ṙ(v̇2)
2(c2−v2) becomes:

(1 − v2

c2
)(
−2h2r′2

r5 +
h2r′′

r4 − h2

r3 ). (112)

Dividing both terms of (107) by (1 − v2

c2 ) we get

−2h2r′2

r5 +
h2r′′

r4 − h2

r3 =
1

(1 − v2

c2 )
(

1 − GM
c2r

)2

(
−GM

r2 + 3
G2M2

c2r3 − 2
G3M3

c4r4

)
. (113)

We now apply the same analysis to (113) as we did for eq. 89. After multiplying in (113) by r2 we
have

−2h2r′2

r3 +
h2r′′

r2 − h2

r
− 1

(1 − v2

c2 )
(

1 − GM
c2r

)2

(
−GM + 3

G2M2

c2r
− 2

G3M3

c4r2

)
= 0. (114)

Let u = 1
r then du

dφ = − 1
r2

dr
dφ and d2u

dφ2 = − 1
r2

d2r
dφ2 + 2

r3 ( dr
dφ )2. So, we get the following differential

equation in u

−h2 d2u
dφ2 − h2u +

(
1 − GMu

c2

)−2
(1 − v2

c2
)−1

(
GM − 3G2M2u

c2
+

2G3M3u2

c4

)
= 0 (115)

or

−h2 d2u
dφ2 − h2u + (1 − v2

c2
)−1GM

1 − 2GMu
c2 + G2M2u2

c4 − GMu
c2 + G2M2u2

c4

1 − 2GMu
c2 + G2M2u2

c4

 = 0.

Dividing by h2, writing du
dφ ≡ u′ and rearranging we get

u′′ + u − GM
h2(1 − v2

c2 )

(
1 −

GMu
c2

1 − GMu
c2

)
= 0 (116)

or else

u′′ + u

(
1 +

G2M2

c2h2(1 − v2

c2 )(1 − GMu
c2 )

)
=

GM
h2(1 − v2

c2 )
. (117)

This is the polar equation of the orbit of a body (a planet) around a stationary body of mass M for
relativistic speed. Compared with eq. (91), it contains a relativistic factor (1 − v2

c2 ) which has some
dependance on u. We try to solve this differential equation.

Let us find a relation between (1 − v2

c2 ) and u. Observe that both 1/(1 − v2

c2 ) and u are periodic in

φ on a classical non relativistic orbit, see Figs. 8 and 10. We define the relation between 1/(1 − v2

c2 )
and u as follows.

1

(1 − v2

c2 )
= A

u
( GM

h2 )
+ B (118)

where u is dimensionless via the factor 1/ GM
h2 . A and B can be derived from the values of 1/(1 − v2

c2 )
and u at the perihelion and aphelion of the planet, the result is, with e being the eccentricity A=
2G2M2

c2h2 and B= 1 − G2M2(1−e2)
c2h2 .
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Figure 8. u(φ)

Figure 9. 1/(1 − v2

c2 )(φ)

1/(1 − v2

c2 ) can be written as

1

(1 − v2

c2 )
= (

2GMu
c2

+ 1 − G2M2(1 − e2)
c2h2 ) (119)

For non relativistic speed v << c it holds 1
(1− v2

c2
)
≈ (1 + v2

c2 ) and we get the conservation of energy:

mv2

2 = mGM
r − G2M2(1−e2)m

2h2 , i.e., the sum of kinetic and potentail energy is a constant.
Then, the eq. 117 becomes

u′′ + u

(
1 +

G2M2

c2h2(1 − GMu
c2 )

(
2GMu

c2
+ 1 − G2M2(1 − e2)

c2h2 )

)
=

2G2M2u
c2h2 +

GM
h2 − G3M3(1 − e2)

c2h4

(120)

8. The Schwarzschild metric
In order to calculate the precession of the perihelion of Mercury, we need to express eq. 120 in the
Schwarzschild metric of the proper coordinates of Mercury and not in the Minkowskian metric used
up to now that corresponds to an observer situated at infinite distance from the massive body and
where Γ tends to zero.

In the spherical coordinates a gravitational field can be written to the first order as Γ = GM
rc2 (36)

and the Schwartszchild metric is expressed as dτ2 = (1−2Γ )dt2−(1−2Γ )−1dr2−r2dθ2−r2 sin θ2dϕ2.
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Which gives for Γ << 1 in a Minkowskian metric: dτ2 = dt′2 − dr′2 − r2dθ2 − r2 sin θ2dϕ2 with the
change of variables dt′ = (1 − Γ )dt, dr′ = (1 + Γ )dr.

Then r̈ in eq. 107 becomes 1−Γ
1+2Γ

d2r′
dt′2 = (1 − 3Γ ) d2r′

dt′2 . The (1 − 3Γ ) factor applies to the first term
of (107) and eq. 115 becomes

(1 − 3Γ )(u′′ + u) − (1 + 4Γ )
GM
h2 (1 − 3Γ + 2Γ2) = 0. (121)

Recalling that u = 1/r , u′′ is the second derivative of u by ϕ and Γ = GMu/c2. We also need to
consider the modification of the Laplacian in (36) that generates Γ ; ∆ becomes (1 + 2Γ )∆ and the
term GM(1 − 3Γ + 2Γ2) must be multiplied by (1 + 2Γ )∆. Thus, the final form of eq. 115 is

(1 − 3Γ )(u′′ + u) − (1 + 4Γ )
GM
h2 (1 + 2Γ )(1 − 3Γ + 2Γ2) = 0 (122)

which can be simplified by eliminating the higher order terms

(u′′ + u) − (1 + 6Γ )
GM
h2 = 0. (123)

Precession of the perihelion of Mercury

We now look for a solution of eq. 123 in the form u = µ + α cos(βφ) with α = eGM
h2 = (u1−u2)

2 and

µ = (u1+u2)
2 . Eq. 123 can be written

u′′ + u = (1 + 6 GMu/c2)
GM
h2 (124)

or else

u′′ + u(1 − 6 G2M2/h2c2) =
GM
h2 . (125)

Replacing u and solving for the term cos(βφ) we get

−β2α cos(βφ) + (1 − 6
G2M2

c2h2 )α cos(βφ) = 0. (126)

Thus β2 =
[
1 − 6 G2M2

c2h2

]
and β ≃ 1 − 3 G2M2

c2h2 we get for the homogeneous solution

u = α cos
[(

1 − 3
G2M2

c2h2

)
φ

]
. (127)

What is the resulting advance of the perihelion? With M = 2 1030 kg the mass of the sun, G =
6.67 10−11m3/kgs2, r = 1/u = 57.9 109m is the average distance of Mercury to the Sun, e = 0.204 for
Mercury, h = 2.7 1015m2/s for Mercury, c = 3 108m/s. The period of revolution of Mercury = 88
days. We get a phase shift due to the 3G2M2

c2h2 term. This shift is 6πG2M2

c2h2 = 5.11 10−7 radians per
revolution. This corresponds to 43.2′′ per century. The corresponding change in the position of the
perihelion moves forward to the orbit of Mercury, the accepted value up to now is indeed 43′′ in the
same direction.
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9. Black holes
Objects whose gravitational fields are too strong for light to escape were already considered in the
18th century by John Michell and Pierre-Simon Laplace. When described by general relativity, the
black hole contains a gravitational singularity at the origin, a region where the spacetime curvature
becomes infinite and contains all the mass of the black hole.

First we will limit ourselves to the study of black holes having mass M with no electric charge
and no angular momentum. What happens to a body in the vicinity r of a black hole? Will it be
swallowed and disappear forever?

Let r be the distance of this object to the centre of the black hole, which is supposed to be located
at r=0 and to contain the mass M. We don’t know yet if the large body of mass M is a black hole or
not, at this stage it is just a homogeneous compact body with mass M "concentrated" at the origin.
The radial extension of the massive body does not matter as long as it is smaller than or equal to r.
This is so, because if r is smaller than the radial extension of the large body of mass M, then some
amount of mass will not be taken into account when calculating the force of attraction at radius r.
When assuming r to be the radial extension of the body of mass M, the following equations express
the force acting on the surface of the body, i.e. at radius r. Eqs. 85 and 86 describe the motion of a
body in a central static field. The gravitational acceleration is as in (83), so that

c2
(

1 − GM
rc2

)−2 (
−GM

r2c2
+ 3

G2M2

c4r3 − 2
G3M3

c6r4

)
.

F(r) is the radial force acting on a unit mass (unit [N]). Let us evaluate that force. The central mass
M is supposed to be concentrated at the origin or at least on a radius smaller than r. We choose the
unit system GM

c2 = 1 for brevity and clarity. Then,

F(r) = (1 − 1
r

)−2(− 1
r2 +

3
r3 − 2

r4 ) (128)

has two singularities 1 at r = 0 and 0 at r=2. Between r=0 and r= GM
c2 the force is always attractive

(F < 0, Fig. 10). The region from r=0 to r = GM
c2 is attractive, with infinite attraction for r = 0 and

Figure 10. F for r < GM/c2

r = GM
c2 . Between r = GM

c2 and r = 2GM
c2 the force is repulsive (F > 0) and is attractive again for

r > 2 GM
c2 . The force then follows a 1

r2 law for large r. The point 2 GM
c2 is stable in equilibrium with
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Figure 11. F for r > GM/c2

zero force, and the corresponding radius is called the limit radius RL. Note that it is equal to the
Schwarzschild horizon in GR. A black hole can never shrink to a null radius: An infinite repulsive barrier
at r= GM

c2 prevents this collapse to happen and RL represents the stable size of a non-rotating black
hole. At RL, the surface of the black hole is in the equilibrium and no force is acting on the surface.
The force (83) derives from the following potential Φ(r), for r > GM

c2 and set to zero at r∞

Φ(r) = c2
(

2GM
rc2

+ ln
(

1 − GM
rc2

))
[
m2

s2
]. (129)

Which can be developed in the series:

Figure 12. Φ for r < GM/c2

Figure 13. Φ for r > GM/c2
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Φ(r) =
GM

r
− G2M2

2r2c2
− G3M3

3r3c4
− . . . . (130)

This series is the sum of an attractive potential GM
r and a repulsive potential equal to −G2M2

2r2c2 −
G3M3

3r3c4 − . . .. The latter repulsive term could be seen as a graviton-graviton interaction term:Iit is
negligible for large distance r but predominant at short distances corresponding to the Schwarzschild
radius. It has a maximum of c2(1 + ln (1/2)) ≃ 0.307c2 at RL.

The escape of light from a "black hole"
In Fig. 14 we plot ˘Φ for a more intuitive understanding. We follow a classical approach equaling
potential and kinetic energies. We have for a unit mass m

1/2 mv2 = mc2
(

2GM
rc2

+ ln
(

1 − GM
rc2

))
.

Dividing by m and equalling v to c gives rise to

1/2 =
(

2GM
rc2

+ ln
(

1 − GM
rc2

))
.

There is no solution to this equation, the kinetic energy is always higher than the potential well, so

Figure 14. −Φ for r > GM/c2

light can always escape from the “black hole”. We have to find a new name for this class of bodies
having a radius close or equal to RL: They’re not holes and they are not black either. Let us call them
CORE. Quasars could be such cores presenting red shifts and pulsations, as will be shown in the next
sections. The core radius of stability RL is equal to the Schwarzschild radius of GR. The core sits
there in stable equilibrium between expansion and contraction forces. If there was no repulsive terms,
−G2M2

2r2c2 − G3M3

3r3c4 − . . ., in the potential, then a solution would be possible where no light can escape
at a horizon radius equal to the Schwarzschild radius and a gravitational singularity would appear.

10. Red shift of a core
The core is still considered as a non-rotating mass M. From (1) we obtain (by taking the potential Φ
into account)

ν1

(
1 − Φ1

c2

)
= ν2

(
1 − Φ2

c2

)
.

If the position 1 is at infinite distance r = ∞ , then Φ1 = 0 At position 2, r = RL and Φ2 = 0.307c2
and then ν1 = ν2(1 − 0.307) = 0.693ν2. The frequency of a spectral line emitted from a point at the
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surface RL of a core will be perceived from an infinite distance at 0.693 times the frequency due to
time slowdown at the surface of the core. But if we take into account the potential well of 0.307 c2,
the emitted frequency would decrease further by a factor of 0.614 since E = hν and E is reduced by a
factor 0.307c2

((c2)/2) . The total frequency shift factor is the 0.693 times (1 − 0.614) which is equal to 0.268.

11. Pulsation of a core
On the surface of the core, a mass is at equilibrium but can also oscillate radially around the equilibrium
point RL. Let us look at its first mode of oscillation: For a unit mass m = 1 on the surface of the core,

the oscillation frequency ω is
√

k
m =

√
k, and

k =
dF
dr

|RL = − c6

4G2M2 (131)

√
|k| =

c3

2GM

Thus, ω = c3

2GM for a core of mass M . For instance a non-rotating core of mass = 1000 times the sun
mass would pulsate on its first mode at ω = 101 rad/s = 16Hz.

12. Expansion of the universe
The estimated mass of the known universe is in a range 1.7 1052 to 1.7 1054kg. Let us calculate the
RL of the universe.

RL =
2GM

c2
= 2.5 1025 to 2.5 1027 m.

The estimated radius of the universe according to the standard cosmological model is 46 109 light
years = 4.2 1026 m. So the estimated radius of the universe is in the same range of magnitude as its
RL radius and it could even be very close to its RL radius! And the universe could then have some
properties of a core. Figure 15 represents −Φ of the universe between 0.7 and 2 RL.

Figure 15. −Φ for r > GM/c2

If considered as a non rotating core, the universe would pulsate around its RL size, at a frequency
c3

2GM or a period 4πc3

2GM = 278 109 years, considering RL = 4.2 1026m = 2GM
c2 (point 2 of Fig 16).

If the universe is now in an expansion phase, this would mean that its size is presently lower than
its horizon RL.

If the universe had begun at a size < 1.27 RL /2, it would have enough potential energy to expand
to an infinite radius if there is no energy loss during that expansion. Otherwise the universe will
oscillate or fluctuate around its RL radius, where Φ is maximum. This resembles the A. D. Sakharov’s
concept of the fluctuating or oscillating universe (Al’tshuler 1991).
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13. Acceleration of the expansion of the universe
Let us consider a body of mass m situated on the rim RL of the universe, the force acting on this
body is (83)

F = m c2
1(

1 − GM
c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
.

The equation of motion is

m r̈ − c2
1(

1 − GM
c2r

)2

(
−GM
c2r2 + 3

G2M2

c4r3 − 2
G3M3

c6r4

)
m = 0

with the potential given by

Φ(r) = c2
(

2GM
rc2

+ ln
(

1 − GM
rc2

))
.

Again, we represent −Φ on the graphs, to make the presentation more intuitive. For small motion

Figure 16. Amplitude A

around the value RL, we approximate F(r) by an harmonic force F(r) = k(r − RL) with k = c6

4G2M2

(eq. 131) and with r = RL at t = 0 we get:

(r − RL) = A sin (
c3

GM
t)

A being the maximal fluctuation in size of the universe, and

˙(r − RL) = A
c3

GM
cos (

c3

GM
t)

is the expansion rate of the universe, and

¨(r − RL) = −A
c6

G2M2 sin (
c3

GM
t)

is the acceleration of the expansion of the universe. When r < RL, the expansion and the acceleration
are both positive, but with a negative rate of the acceleration. This is a common feature of periodic
motion. When the radius of the universe will reach its horizon RL the expansion will continue but
at a decelerating rate until the universe reaches its maximum size RL + A and stops expanding. Then
the inverse movement will take place.

A and t are two unknowns which can be determined by the values of the expansion rate (Hubble-
Lemaître constant = 70 km/s/Mps) and the value of the acceleration of the universe expansion.
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14. Conclusion
The present model for gravitation is not equivalent to general relativity in that the field Γ determines
the geometry and plays a central role. The existence of a short range repulsive potential leads to very
interesting results, especially with regard to black holes which should not exist but instead would be
"cores" or "compact bodies" that have a finite size. The current that generates the gravitational forces
is the Energy-Impulsion tensor and this is a natural consequence of the invariance of the action under
the group of translations in space-time. The repulsive −G2M2

r2 potential term is absent in general
relativity. For that reason and in order to explain the acceleration of the expansion of the universe,
the influence of a hypothetical ‘dark energy’ was invoked in GR. Our model does not need ‘dark energy’
to explain the acceleration of the expansion of the universe. The repulsive −G2M2

r2 potential tends to open
the orbit of Mercury and this contributes to fix the advance the perihelion to 42.3′′ per century.
This is in good agreement with the measured value of 43′′. The expansion of the universe could
be a consequence of the universe being considered as a core with a natural pulsation frequency of
one cycle per 278 109 years. As such the universe would radially oscillate around an equilibrium
point instead of being originated from a ’Big Bang". The speed distribution in rotating galaxies arms
could also be calculated in the new theoretical model, possibly taking into account a “Lorentz” force.
What’s more, we can show that this "Lorentz" force acts in the right centripetal direction without
maybe having to rely on "dark matter" to do the job. Quantum gravity should have the massless
spin 2 graviton for the propagator of the interaction and this quantification could be the subject of
further work. Rotating cores are also a topic for further study.
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