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Abstract
We introduce logemes, consistent fragments of reasoning closed under at least one inference rule, as
foundational units for different logics. Unlike full logical theories, logemes need not be axiomatized or
algebraically structured; instead, they are evaluated via their associated Lindenbaum-Tarski quotients,
interpreted as spaces presenting partially ordered sets. We propose that two logemes are homotopy
identical precisely when their posetal semantics are homotopy equivalent. This criterion, grounded in
the Univalence Axiom of Homotopy Type Theory, allows us to formalize diagrammatic reasoning and
compare ancient logical traditions, such as Stoic and Yogācāra, on purely mathematical grounds. We show
that both traditions instantiate the same homotopy type of poset, confirming their logical identity despite
historical separation.
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1. Introduction
From the standpoint of modern mathematical logic, pre-20th-century logical systems, such as
Stoic, Epicurean, Aristotelian, and Buddhist, are not theories in the formal sense, since they lack
axiomatizations, completeness results, and algebraic semantics. Nevertheless, they contain coherent
doctrines of inference, introducing explicit rules for deriving conclusions from premises.

We propose that such doctrines are best understood as collections of logemes – minimal, usable
fragments of reasoning. A logeme is not a theory but a reasoning token, i.e., a finite, consistent set of
formulas on which at least one inference rule can be applied (e.g., modus ponens on {p, p ⇒ q, q}).
This reflects everyday practice: legal, medical, or scientific argumentation rarely invokes full logical
systems, but relies instead on reusable, local inferential patterns. Hence, the central thesis of this paper
is as follows: the history of logic prior to Frege and Russell is the history of logemes, not of logical theories.

To formalize this approach, we equip logemes with semantic content via Lindenbaum-Tarski
quotients, then classify them up to homotopy equivalence of their induced posets. This approach,
inspired by univalent foundations Univalent Foundations Program 2013, treats logically equiva-
lent reasoning patterns as homotopy identical when their diagrammatic realizations share the same
homotopy type.

The paper proceeds as follows. In section 2, we define logemes and their semantics. Section 3
surveys tools for computing homotopy types of posets. Section 4 establishes the homotopy-theoretic
identification principle. In section 5, we apply the framework to Stoic and Yogācāra logemes, proving
their identity. We conclude with historical and methodological implications.
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2. Logemes and Their Semantics
Let T be a (classical or intuitionistic) propositional logic, with algebra of formulas AT . For any
formula p, define its equivalence class:

||p||T := {q : ⊢T p ≡ q}.

Let ≡T be the congruence induced by ≡. The Lindenbaum-Tarski algebra of T is the quotient AT /≡T .
When T is classical, this is a Boolean algebra; for intuitionistic T, a Heyting algebra.

Definition 1 (Logeme). A finite set of formulas F ⊆ AT is a logeme iff F is consistent: ̸⊢T
∧

F ⇒ ⊥.
Furthermore, this F is not trivial iff it is inferentially closed under at least one rule: there exists an inference
rule R of T and a substitution σ such that the premises of Rσ lie in F, and its conclusion is entailed by F (not
necessarily in F itself).

The set F = {p, p ⇒ q} is a logeme: it is consistent (in any nontrivial T), and modus ponens applies
to yield q. The singleton {p} is trivial, as no rule applies; and {p,¬p} is inconsistent, hence excluded.

Given a logeme F, we consider the subalgebra AF ⊆ AT generated by F, and its quotient AF/≡T .
However, for historical logics, we cannot assume a background theory T. We thus define semantics
intrinsically:

Definition 2 (Meaningful Logeme). A logeme F is meaningful if the Lindenbaum quotient AF/≡ ( for
the fragment it generates) carries a partial order ≤ such that:

||p ⇒ q|| = 1 iff ||p|| ≤ ||q||.

In this case, AF/≡ is a poset; it is a lattice if all binary suprema and infima exist.

Proposition 1. The logeme F = {(p & (p ⇒ q)) ⇒ q} is meaning ful for the 2-element chain 2 = {0 < 1}
under Boolean interpretation.

Proof. Indeed:

||(p & (p ⇒ q)) ⇒ q|| = ||¬(p & (¬p ∨ q)) ∨ q||
= ||(¬p ∨ ¬(¬p ∨ q)) ∨ q||
= ||((¬p ∨ q) ∨ ¬(¬p ∨ q))|| = 1.

Hence, the formula evaluates to 1 (top element), and modus ponens holds in 2.

Thus, logical reasoning reduces to operating on individual meaning ful logemes, each tied to a class
of posets. The space of all such logemes vastly exceeds the space of formal logical systems.

3. Computational Tools for Homotopy Types of Posets
To classify logemes via homotopy, we require effective methods to compute or simplify the homotopy
type of the order complex |∆(P)| of a finite poset P. Below we recall and elaborate the main
combinatorial-topological tools.

Definition 3 (Order Complex). Let P be a (finite) partially ordered set. The order complex of P, denoted
∆(P), is the abstract simplicial complex defined by:

∆(P) :=
{

{x0, x1, . . . , xk} ⊆ P : k ≥ 0, x0 < x1 < · · · < xk in P
}

.

Each such chain is a k-simplex; the face relation is given by inclusion of subchains.
The geometric realization |∆(P)| is the topological space obtained by assigning to each k-simplex {x0 <

· · · < xk} a standard geometric k-simplex in Rk+1 and gluing them along common faces. This yields a finite
CW-complex, canonically associated to P.
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Remark 1. The construction is functorial: an order-preserving map f : P → Q induces a simplicial map
∆(f ) : ∆(P) → ∆(Q), and hence a continuous map |∆(f )| : |∆(P)| → |∆(Q)|.

The homotopy type of |∆(P)| is an invariant of P; it captures global connectivity properties (e.g.,
presence of “holes”) while ignoring local combinatorial details.

Example 1. Let us consider some easy cases:

1. If P = {a} is a singleton, ∆(P) = {{a}} and |∆(P)| is a point.
2. If P = {a, b} with a ∥ b (incomparable), then ∆(P) =

{
{a}, {b}

}
(no 1-simplex), so |∆(P)| is a discrete

2-point space, homotopy equivalent to S0.
3. If P = {a < b}, then ∆(P) =

{
{a}, {b}, {a, b}

}
, and |∆(P)| is a closed interval and then it is contractible.

A powerful simplification technique for finite posets is core reduction, introduced by Stong 1966
and later refined in the homotopy-theoretic context by Raptis 2010.

Definition 4 (Upbeat and Downbeat Points). Let P be a finite poset and x ∈ P.

• x is an upbeat point if the set U(x) := {y ∈ P : y > x} is nonempty and has a least element, denoted x↑ .
• x is a downbeat point if the set L(x) := {y ∈ P : y < x} is nonempty and has a greatest element,

denoted x↓.

Equivalently, x is upbeat iff there exists x↑ > x such that for all y > x, y ≥ x↑; similarly for downbeat.

Intuitively, an upbeat point x is “redundant”: it sits directly below a unique minimal element
above it, so removing x and identifying it with x↑ does not change the homotopy type.

Theorem 1 (Core Reduction: Stong 1966; Raptis 2010). Let P be a finite T0-poset (i.e. the specialization
preorder is antisymmetric – it is automatically true for posets). Then

1. There exists a unique subposet core(P) ⊆ P, called the core of P, such that:
• core(P) contains no upbeat or downbeat points;
• core(P) is a strong deformation retract of P in the Alexandrov topology (hence |∆(P)| ≃

|∆(core(P))|).
2. core(P) is obtained recursively: repeatedly delete any upbeat or downbeat point until none remain; the

result is independent of deletion order.
3. For finite posets P and Q, we have

|∆(P)| ≃ |∆(Q)| ⇐⇒ core(P) ∼= core(Q) as posets.

Example 2. Consider the following 4-element poset:

P = {a, b, c, d}, a < c, b < d, a ∥ b, c ∥ d, a ∥ d, b ∥ c.

No element has a unique cover above or below, e.g., U(a) = {c} has least element c, but U(a) = {c} is a
singleton, so c is its minimum. Thus a is upbeat, with a↑ = c. Similarly b is upbeat (b↑ = d), c is downbeat
(c↓ = a), d is downbeat (d↓ = b). But core reduction forbids removing both endpoints of a covering pair
simultaneously. In fact, the core is obtained by removing one pair, e.g., delete a and b; the remaining poset {c, d}
with c ∥ d is discrete 2-point. Thus, its order complex is S0.

Example 3. Consider another 4-element poset:

P = {0, a, b, 1}, 0 < a < 1, 0 < b < 1, a ∥ b.

This is the Boolean lattice 22. Now:
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• a: U(a) = {1}, then it is upbeat (a↑ = 1);
• b: U(b) = {1}, then it is upbeat;
• 1: L(1) = {a, b} has no greatest element (since a ∥ b); therefore, it is not downbeat;
• 0: U(0) = {a, b} has no least element; therefore, it is not upbeat.

Removing a and b leaves {0, 1} with 0 < 1, but it is a contractible chain.

Example 4. A new 4-element poset:

P = {−1, a, b, +1}, −1 < a < +1, −1 < b < +1, a ∥ b.

Let its order complex be as follows:

∆(P) =
{

{−1}, {a}, {b}, {+1}, {−1, a}, {−1, b}, {a, +1}, {b, +1}
}

.

Then, geometrically, this is a 1-dimensional simplicial complex consisting of two edges sharing endpoints, but
it is a circle S1. Indeed,

|∆(P)| ∼= S1.

Beyond core reduction, several other powerful techniques exist:

1. Cross-cuts (Lakser 1971). Let L be a bounded lattice (0 = min L, 1 = max L). A cross-cut is a
subset X ⊆ L \ {0, 1} such that:

(i) X is an antichain (no two elements comparable);
(ii) Every maximal chain in L contains exactly one element of X.

Then the inclusion-induced map |∆(X)| ↪→ |∆(L)| is a homotopy equivalence. In particular, if X
is discrete with k elements, |∆(L)| ≃

∨k−1 S0.
2. Contractible Carriers (Walker 1981). Let K be a simplicial complex and Y a topological space.

A carrier is a function C : {simplices of K} → {subspaces of Y} such that σ ⊆ τ ⇒ C(σ) ⊆ C(τ).
It is contractible if each C(σ) is contractible. Then:

(a) There exists a continuous map f : |K| → Y with f (|σ|) ⊆ C(σ) for all σ (f is carried by C);
(b) Any two such maps are homotopic.

This is used to construct homotopy equivalences combinatorially.
3. Order Homology. For n ≥ 0, define the order homology groups of P by:

Hn(P;Z) := Hsing
n

(
|∆(P)|;Z

)
,

the singular homology of the geometric realization. Equivalently, one may use simplicial homol-
ogy of ∆(P). These are homotopy invariants:

P ≃ Q ⇒ Hn(P) ∼= Hn(Q) ∀n.

For instance:

H0(P) ∼= Zc, c is a number of connected components of |∆(P)|,

and H1(P) ∼= Zr detects the number r of independent 1-dimensional loops.

These tools enable a systematic classification of logeme semantics. Given a logeme F, one proceeds
step by step as follows:

1. Compute its associated poset presentation PF := AF/≡.
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2. Reduce PF to its core, core(PF), by iteratively stripping away all dismantlable or contractible
elements. This yields a canonical representative in the homotopy class of PF.

3. Compute the (co)homology groups H∗(PF), or alternatively recognize PF (or core(PF)) as a
known combinatorial poset or simplicial shape (e.g. a diamond 22, a Boolean lattice 2n, a sphere,
or a bouquet of circles).

4. From these invariants determine the homotopy type of the semantic space carried by F.

Two logemes F and G are identified precisely when their associated invariants coincide; that is,

core(PF) ≃ core(PG) and H∗(PF) ∼= H∗(PG),

ensuring that they define the same semantic homotopy type. This procedure yields a complete and
structurally transparent classification of logemes.

4. Homotopy Identification of Logemes
To systematize logemes in a manner compatible with both historical reasoning and modern math-
ematics, we work within the framework of univalent foundations (Univalent Foundations Program
2013). At its core lies the Univalence Axiom, which reinterprets equality of mathematical objects as
equivalence:

Axiom 1 (Univalence Axiom). For any two types (spaces) X and Y, the identity type X = Y is equivalent
to the type of homotopy equivalences between them:

(X = Y) ≃ (X ≃ Y).

Let F be a meaningful logeme (cf. definition 2). Its Lindenbaum quotient AF/≡ carries a natural
partial order ≤, making it a finite poset, denoted

PF := AF/≡.

As explained in section 3, every finite poset gives rise to a simplicial complex ∆(PF), or its order complex,
whose geometric realization |∆(PF)| is a finite CW-complex. This space encodes the global “shape”
of the logeme: connected components correspond to independent reasoning fragments, loops to
cyclic dependencies, and higher holes to unresolvable contradictions.

We thus treat PF not merely as a combinatorial object, but as a space via the composite functor

F 7−→ PF 7−→ ∆(PF) 7−→ |∆(PF)|.

The Univalence Axiom motivates two related but distinct relations on logemes:

Definition 5 (Strict Identity of Logemes). Two logemes F and F′ are strictly identical, written F = F′,
iff their order complexes are the same:

F = F′ ⇐⇒ ∆(PF) = ∆(PF′ ).

Strict identity means that combinatorically both logemes are identical. More useful is the univalent
notion:

Definition 6 (Homotopy Identity of Logemes). Two logemes F and F′ are homotopy identical (in the
univalent sense), written F ≃ F′, iff their realizations are homotopy equivalent:

F ≃ F′ ⇐⇒ |∆(PF)| ≃ |∆(PF′ )|.
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Note that under the Univalence Axiom (axiom 1), this is not merely a definition, since it is a
justified identification: the identity type F ≃ F′ is the type of homotopy equivalences between
|∆(PF)| and |∆(PF′ )|.

The notation |∆(PF)| denotes the geometric realization of the order complex of the poset PF. In
the present framework, this space admits a natural interpretation as a logic diagram for the formulas
generated by the logeme F.

More explicitly, the simplices of ∆(PF) correspond to chains of entailments or dependency
relations among the formulas encoded in F, while their geometric realization |∆(PF)| provides a
continuous topological space in which these logical relations are represented as higher-dimensional
cells. Thus, |∆(PF)| serves as a faithful topological model of the inferential structure of F, capturing
not only the individual formulas but also the ways in which they combine, branch, or form cycles
within the logical system. It provides a rigorous mathematical framework for logic diagrams as a
bona fide logical discipline in its own right, distinct from syntactic proof theory or model-theoretic
semantics (Anger et al. 2022, Schumann and Lemanski 2022) – by formalizing their structural
invariants through homotopy-theoretic and order-theoretic methods. Specifically, diagrams are
no longer treated as heuristic illustrations, but as combinatorial models whose inferential content is
encoded in the homotopy type of their associated posets (or, equivalently, the geometric realization
of their order complexes). This approach validates the five “dogmas” challenged in Anger et al. 2022,
e.g., the belief that diagrams are inherently ambiguous, non-compositional, or incapable of expressing
generality, by demonstrating that:

(i) Syntax can be captured via formulas from F;
(ii) Semantics arises from the simplicial complex ∆(PF) for the poset PF obtained based on the formulas

of F;
(iii) Inference rules correspond to homotopy-preserving transformations (e.g., core reduction, barycen-

tric subdivision, or strong collapses);
(iv) Soundness and completeness can be formulated as homotopy equivalences between diagram spaces

and algebraic models (e.g., Boolean or Heyting algebras);
(v) Diagrammatic equivalence coincides with univalent identity: two diagrams represent the same

reasoning pattern iff their realizations are homotopy equivalent.

Thus, the study of logical diagrams is elevated from a pedagogical aid to a formal branch of logic,
what one may call homotopy theory of logic diagrams with its own syntax, semantics, and proof theory
grounded in univalent foundations. As we can see, univalent foundations provide not only a formal
framework, but a conceptual clarification, for which logical reasoning is not about manipulating symbols
in a fixed syntax, but about navigating a space of homotopy types, where identity is sameness of
shape, and inference is continuous transformation.

5. Case Study: Stoic and Yogācāra Logemes

We now apply the univalent framework to two historically and geographically distinct traditions:
Hellenistic Stoicism (3rd c. BCE) and Indian Yogācāra Buddhism (5th c. CE). Despite a millennium
of separation and no known direct textual transmission, their core inferential systems exhibit striking
structural parallels. We show that this is homotopy equivalence.

The Stoics codified five anapodeiktoi sullogismoi (indemonstrable syllogisms), see Bobzien 1999,

https://orcid.org/0000-0002-9944-8627


Kielnarowa Review 63

captured by the logeme:

FStoic =



(MP) ((p ⇒ q) & p) ⇒ q,
(MT) ((p ⇒ q) &¬q) ⇒ ¬p,
(MPT) (¬(p &¬q) & p) ⇒ ¬¬q,
(MTP1) ((¬p ⊕ q) &¬p) ⇒ ¬q,
(MTP2) ((¬p ⊕ q) &¬¬p) ⇒ q.


. (1)

These correspond respectively to modus ponens (MP), modus tollens (MT), modus ponendo tollens (MPT),
and two variants of modus tollendo ponens (MTP1 and MTP2).

Their semantics is given by the square of opposition in Figure 1, interpreted as a poset PStoic, in
which ||p|| := “day”, ||q|| := “light”, ||¬p|| := “dark”, ||¬q|| := “night”.

day night

light dark

Figure 1. The Stoic square of opposition. Bottom edge is contradictory (not subcontrary).

In this poset PStoic, we know that ||q ⊕ ¬p|| = 1. Then

∆(PStoic) = [{||p||, ||q||, ||q ⊕ ¬p||}, {||¬q||, ||¬p||, ||q ⊕ ¬p||}],

i.e., ∆(PStoic) consists of two 2-simplices, see Figure 2. It is worth noting that |∆(PStoic)| is contractible
(collapsed to a point).

||p|| ||q||||p||

||q ⊕ ¬p||

||¬q|| ||¬p||

Figure 2. The logic diagram |∆(PStoic)| for the Stoic square of opposition, see Figure 1.

Dharmakı̄rtı̄’s system (Dreyfus 1997), systematized in the Nyāyabindu, employs 13 context-
sensitive inference rules, categorized by token type (analytic, causal, genus, etc.) and compositionally
extended (e.g., composite modus tollendo ponens). So, the Yogācāra logeme FYogacara is defined as
follows:

(i) (MP, analytic token) ((p ⇒ q)&p) ⇒ q,
(ii) (MP, causal token) ((p ⇒ q)&p) ⇒ q,

(iii) (MT, analytic token) ((p ⇒ q)&¬q) ⇒ ¬p,
(iv) (MT, causal token) ((p ⇒ q)&¬q) ⇒ ¬p,
(v) (MT, genus) ((p ⇒ q)&¬q) ⇒ ¬p,
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(vi) (composite MTP1) ((p ⇒ q)&(q ⊕ ¬p)&p) ⇒ ¬¬p,
(vii) (composite MTP1) ((q ⊕ ¬p)&p&((p ⇒ r)&(r ⇒ q))) ⇒ ¬¬p,

(viii) (composite MPT) (¬(q&¬p)&p&(p ⇒ q)) ⇒ ¬¬p,
(ix) (MPT, cause) (¬(q&¬p)&q) ⇒ ¬¬p,
(x) (composite MTP1) ((q ⊕ ¬p)&p&(p ⇒ q)) ⇒ ¬¬p,

(xi) (MT, cause) ((p ⇒ q)&¬q) ⇒ ¬p,
(xii) (composite MTP2) ((q ⊕ ¬p)&p&(p ⇒ ¬q)) ⇒ ¬p,

(xiii) (MPT, token) (¬(q&¬p)&q) ⇒ ¬¬p.

These rules are contextually enriched variants of the Stoic indemonstrables: modus ponens (MP),
modus tollens (MT), modus ponendo tollens (MPT), and two versions modus tollendo ponens (MTP1 and
MTP2).

Both logemes (Stoic and Yogācāra) are verified on the same poset. Indeed, the Yogācāra semantics
is given by the square of opposition in Figure 3, interpreted as a poset PYogacara, in which ||p|| :=
“fire”, ||q|| := “warmth”, ||¬p|| := “cold”, ||¬q|| := “ice”.

fire ice

warmth cold

Figure 3. The Yogācāra square of opposition. Bottom edge is also contradictory (not subcontrary).

Yogācāra logic, like its Stoic counterpart, is grounded in a theory of sign-inference (anumāna). A
phenomenon q (the signified, sādhya) is inferred from its sign or token (liṅga, p), provided p is invariably
connected with q (the vyāpti condition).

Proposition 2. Under the above interpretation, PYogacara ∼= PStoic as posets. Consequently:

∆(PYogacara) ∼= ∆(PStoic).

□
Hence, we conclude:

Theorem 2 (Stoic–Yogācāra Logeme Identity). The Stoic logeme FStoic and the Yogācāra logeme
FYogacara are identical:

FStoic = FYogacara.

□
In contrast, the Aristotelian syllogistic logeme FAristotelian, modeled on the classical square of

opposition (with subcontrary bottom) is not homotopy equivalent to Stoic or Yogācāra logemes:
FAristotelian ̸≃ FStoic.

Historically, the earliest attested logemes appear in Mesopotamian legal and divinatory texts (2nd
millennium BCE), explicitly deploying MP and MT (Schumann 2023). No such reasoning fragments
are found in contemporaneous cultures lacking Sumerian-Akkadian influence. The homotopy
identity FStoic = FYogacara thus supports a diffusionist hypothesis: Hellenistic logical doctrine likely
influenced early Indian Buddhist epistemology along Silk Road intellectual networks. This case
exemplifies how univalent foundations can be applied to two historically distinct traditions.

Remarkably, the same homotopy type arises even within some fragments of classical propositional
logic (CPL):

Example 5 (Classical Realization). Consider the CPL-logeme:

FCPL =
{

(p ∧ q) ⇒ p, (¬p ∧ r) ⇒ ¬p, p ⊕ ¬p, ¬
(
(p ∧ q) ∧ (¬p ∧ r)

)}
.
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Its semantic poset PCPL is isomorphic to PStoic, and ∆(PCPL) ∼= ∆(PStoic) ∼= ∆(PYogacara), see Figure 4.
Thus, the Stoic, Yogācāra, and even a fragment of classical logic converge on the same order complex – a two
2-simplices connected at one point.

p ¬pp

p ∧ q

¬p

p ∧ q

¬p

¬p ∧ r¬p ∧ rp ∧ q

p

¬p ∧ r

(a) The Stoic square of opposition
for FCPL

||p ∧ q|| ||p||||p ∧ q||

||p ∨ ¬p||

||¬p ∧ r|| ||¬p||

(b) |∆(PCPL)|

||p|| ||q||||p||

||q ⊕ ¬p||

||¬q|| ||¬p||

(c) |∆(PStoic)| ∼=
|∆(PYogacara)|

Figure 4. (a) The Stoic square of opposition for the logeme FCPL; (b) the simplicial complex of the Stoic square of opposition
for the logeme FCPL; (c) the simplicial complex of the Stoic square of opposition for the logeme FStoic of the Stoics as well as
for the logeme FYogacara of the Yogācārins.

6. Conclusion
We have formalized logemes as the elementary units of cross-cultural logical practice and provided a
homotopy-theoretic criterion for their identity. This framework:

• Explains “logical monism” in history (Lemanski 2025) by using different combinations of logemes;
• Mathematically validates claims about “common cores” in diagrammatic reasoning (Anger et

al. 2022);
• Explains the structural coincidence of Stoic and Yogācāra inference systems as homotopy invari-

ance;
• Grounds the “logic of diagrams” in pure mathematics, due to univalence.

The earliest attested logemes (modus ponens and modus tollens in Mesopotamian divination texts)
suggest a diffusionist hypothesis: the shared homotopy type of Hellenistic and Buddhist logemes
likely reflects historical transmission along the Silk Road, not independent convergence.
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