
Kielnarowa Review (2025), 2, 16–26
doi: https://doi.org/10.57656/kr-2025-0002

ARTICLE

Entanglement and smooth geometry in 4-spacetime
Jerzy Król iD*

University of Information Technology and Management, Chair of Cognitive Science and Mathematical Modelling, ul.
Sucharskiego 2, 35-22 Rzeszów, Poland
*Corresponding author. Email: jkrol@wsiz.edu.pl

Abstract
We try to understand quantum entanglement by geometric relations of spatially separated regions of 4-
spacetime. The relations become detectable by working in the Euclidean smoothness structure underlying
the Lorentzian structure. There are 5-dimensional bridges, i.e. 5-dimensional nontrivial smooth h-
cobordisms connecting spatially separated 4-regions of spacetime. These connections are nonlocal in
spacetime. At the quantum regime spacetime is reduced to its smooth atlases of charts which are related
by automorphisms of the maksimal Boolean algebra in the quantum lattice of projections. Quantum
entanglement in 4-spacetime can be represented by exotic smoothness structures on R4, which are
determined by the h-cobordisms due to the results in particular by Casson, Akbulut, Freedman, Donaldson
or Gompf. The involutions of corks correspond to the phases between the Boolean ZFC-models and to
the change of the exotic R4 in W5. This work is more a description of the ongoing project than a detailed
presentation of the results. The discussion focuses on certain general contexts and even philosophical
features.
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1. Introduction
The breakthrough discoveries in differential topology and geometry from 1980s led to the existence
of exotic smooth versions of many compact and noncompact 4-manifolds. Since then, researchers
have been trying to understand the importance of this phenomenon in physics. A particular interest
is the case of exotic R4 and S3 ×R. Both are open smooth 4-manifolds. Exotic R4s are topologically
equivalent (homeomorphic) with R4 but nondiffeomorphic with standard smooth R4. Similarly,
exotic S3 × R are homeomorphic with S3 × R but nondiffeomorphic with standard smooth S3 × R.
All known exotic R4s fall into two uncountably infinite classes, small and large exotic R4s. Small are
embeddable in standard smooth R4, while large cannot be embedded in R4.

Consider a topological 5-cobordism W5(N1, N2), where the boundary of the manifold W5,
∂W5, is the disjoint sum of two topological 4-manifolds N1, N2, i.e., ∂W5 = N1 ∪ N2. When N1 is
topologically equivalent (homeomorphic) to N2, N1 ≃ N2, then W5 ≃ N1 × I where I = [0, 1] ⊂ R
and we call such cobordism W5(N1, N2) topologically trivial. To be more precise, we require that
the topological manifolds W5, N1, N2 be simply-connected and compact and W5, N1 × I, N2 × I
be homotopically equivalent to each other. Then the statement that they are homeomorhic is the
topological h-cobordism theorem for Wn, n = 1, 2, ..., k, ... and Nn−1

1 , Nn−1
2 (h stays for the above

mentioned homotopical equivalence). The proof for the W5 case was given in Freedman 1982.
We want to model nonlocal connections between regions of spacetime manifold by 5-cobordisms,

such that this can shed light on the phenomenon of quantum entanglement. However, certain
clarifications are in order. Spacetime is a smooth Lorentzian 4-manifold, but its underlying manifold
(mathematically, which can be non-physical) is an Euclidean open smooth 4-manifold on which
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the Lorentzian structure is introduced. Thus, open regions U1, U2 in spacetime should be subsets of
N1, N2 correspondingly, and all manifolds W5, N1, N2, U1, U2 should be smooth. Then we deal
with smooth h-cobordism ’theorem’ rather than the topological one. However, in dimension n = 5
the statement:

Given a smooth h-cobordism W5 between smooth, compact, Euclidean, simply-connected 4-manifolds
N1, N2 such that W5, N1 × I, N2 × I all are pairwise homeomorphic, the smooth cobordism W5(N1, N2)
is diffeomorphic to N1 × I

is, in general, false. This was shown in Donaldson 1983. The understanding of this phenomenon
is deeply rooted in modern differential topology and geometry and is crucial for this work.

The quantum uncertainty principle between some pairs of observables and quantum entanglement
between two systems are nontrivially related. Entanglement can be detected as non-classical (e.g.
breaking the Bell’s bound) if there are noncommuting observables [X, Y] ̸= 0 at Alice and Bob
sides. Certainly, entanglement cannot erase the uncertainty of the observables applied to each
system separately, but it can reduce the quantum bound for the entangled state when correlations
are between the results of Alice a(X), a(Y) on the entangled state and the results of Bob b(X), b(Y)
on it. An entangled state is just a state and it does not require any noncommuting observables (or
uncertainty between them). But to witness entanglement as a quantum phenomenon we need
noncommuting X, Y. Similarly, entanglement can be detected in spacetime by measuring the
momentum and position P, Q. For a single system, the entanglement of states cannot reduce the
Heisenberg uncertainty, however, for two entangled subsystems s1 ⊗ s2 the P, Q measurement in
the Alice and Bob laboratories can reduce the uncertainty, which, though, does not contradict the
uncertainty relations in each subsystem individually (Horodecki et al. 2009).

Here we try to understand the nonlocality in spacetime by incorporating 5-dimensional bridges
corresponding to nontrivial W5 cobordisms. These bridges introduce additional correlations between
spatially separated noncommuting observables.

2. 5-dimensional bridges in 4-spacetime and exotic smoothness
This and the following sections collect arguments for seeing nontrivial smooth cobordisms W5 as
modeling the spacetime bridges that connect 4-regions U1, U2 . Here we focus on the classical
differential geometric point of view, while in the next section we connect this with the formalism
of quantum mechanics (QM). As we mentioned above, we work in Euclidean metrics, since they
underlie the Lorentzian case, and the smoothness structures assigned to Euclidean R4 allow for
uncovering a fundamental mathematical layer that has connections to QM. We use the symbol R4

for exotic R4s where R4 refers to the standard smoothness structure on R4. Let us follow the idea in
Król and Asselmeyer-Maluga, 2025 that under certain, rather extreme conditions in spacetime, one
can separate p = (p1, p2, p3, E) and q = (q1, q2, q3, t) as coordinates of a single physical object, and they
contribute as local coordinate frames in the reconstructed defragmented new spacetime. Here we
describe the separation process as the evolution of these 4-dimensional patches p, q ≃ R4 that are
represented by trivial open 5-cobordisms C0 = R4 × I as the subcobordism of certain trivial compact
W5(N1, N2) ≃ N1 × I, thus, C0 ⊂ W5. So, the evolution of p or q can be represented by trivial
cobordisms as in Fig. 1a) when the momenta and positions to be measured are actually assigned to
different particles. However, in the case where momentum and positions are observables of a single
particle, the uncertainty relation constrains their simultaneous measurement

∆p · ∆q ≥ h̄
2

.

This 3-dimensional version can be formally extended over dimension four as follows

pµ · qν ≥ ℏ
2
δ
µ
ν,µ,ν ∈ {0, 1, 2, 3}, pµ = (E, p), qν = (t, x).
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Figure 1. 5-dimensional evolutions of 4-regions. a) p, q evolve via trivial cobordisms p × I, q × I. This corresponds to the
independent shifts of 4-dimensional local regions in spacetime as can be the case for two separated particles such that their
positions and momenta are not confined by the uncertainty reltion. b) Uncertainty relations in a small 4-region (p, q) affect
the evolutions of the regions p and q and enforces the correlations. c) There results a nontrivial 5-cobordism C0(p, q) as a
subcobordism of certain W5(N1, N2).

These 4-dimensional coordinate patches R4 ≃ p, q can evolve in 5-dimensions as 5-cobordisms,
leading to their spatial separation with a degree of uncertainty being transferred to entanglement.
The quantum side of the process will be discussed in the next section. Here we want to determine the
smooth geometric component of it. The evolution of the p, q patches that undergo the uncertainty
principle in the micro initial state is represented in Fig. 1b). In Król and Asselmeyer-Maluga, 2025
conditions were given for the destruction of the integrity and causality of the spacetime manifold
and this resulted in the fragments of spacetime, each being a R4 local patch. Then, the reverse
process was described to retain the integrity, causality, and the underlying smoothness structure.
The smooth regions of the reconstructed Euclidean spacetime become necessarily exotic smooth
R4, i.e. R4. Here we focus on this classical geometric picture (without touching quantum level)
and describe the appearance of R4s in spacetime due to nontrivial cobordisms W5 connecting 4-

https://orcid.org/0000-0002-7296-7355


Kielnarowa Review 19

regions p, q in spacetime. This is represented in Fig. 1c) where nontrivial open 5-subcobordism
C0(p, q) ⊂ W5(N1, N2) is visualized. The classical counterpart to losing the causality and integrity
of 4-spacetime is to consider the 5-dimensional C0 that cannot sit in M4 and thus cannot be local in
spacetime. We will see that indeed C0 contains information about quantum entanglement.

Why C0 has to deal with exotic R4s? This is really a deep result in mathematics first observed
and proved in Donaldson 1983 by applying gauge field theory methods to the differential geometry
of 4-manifolds and making use of another profound result in the topology of 4-manifolds obtained
in Freedman 1982. The analysis of the nontrivial cobordism W5(N1, N2) for compact 4-manifolds
N1, N2 that were simply connected such that N1 = K3#CP2 and N2 = #CP2#20CP2 led Akbulut
to the discovery of compact cork (Akbulut cork) K ⊂ N1 with a nonempty boundary ∂K. Here
K3 is the celebrated K3 - surface (complex 2-dimensional compact smooth manifold), CP2 is the
2-dimensional complex projective space, CP2 is CP2 with the reversed orientation and # is the
connected sum of two manifolds (obtained by cutting off 4-balls from each manifold and gluing the
remnants manifolds by homeomorphism, or difffeomorphism, of their common boundary). It appears
that in the above case the Akbulut cork K has an explicit description via handle decomposition, and
this is known as Mazur manifold (Akbulut, 1991(a), 1991(b)) and ∂K = Σ(2, 5, 7) is the homology
3-sphere, one of Brieskorn’s spheres (Gompf and Stipsicz 1999). The first contractible 4-manifolds
whose nonempty boundary would not be S3 were constructed by Mazur in 1961. Then many
other examples were built and it was shown that the boundary of such generalized Mazur manifolds
can be Brieskorn homology 3-spheres Σ(2, 5, 7),Σ(3, 4, 5),Σ(2, 3, 13) (Akbulut and Kirby, 1979).
Since then it has been shown (in particular by Casson) that many other Brieskorn spheres appear as
the boundary of such contractible 4-manifolds. Thus, the point is that for any nontrivial smooth
5-cobordism W5(N1, N2) between two smooth nondiffeomorphic, compact, simply-connected
4-manifolds N1, N2, there is always an embedded cork K ⊂ N1 and the special role is played by
∂K. The celebrated example is N1 = K3#CP2 and N2 = #CP2#20CP2, where these manifolds are
homeomorphic but nondiffeomorphic, and the Akbulut cork K, which is a compact, contractible
4-manifold, has a boundary ∂K = Σ(2, 5, 7).

The following decomposition result is basic for understanding 5-h-cobordisms and their relation
to exotic R4s (Curtis et al., 1996, p.343). Let N1, N2 be two smooth compact simply-connected
4-manifolds and W5(N1, N2) be a smooth nontrivial simply-connected 5-cobordism between them.

Theorem 1 There exist decompositions: N1 = K ∪∂K N ′
1 and N2 = K ∪∂K N ′

2 such that (N ′
1,∂K) and

(N ′
2,∂K) are diffeomorphic and the subcobordism W5′(N ′

1, N ′
2) = N ′

1 × I is trivial.

K is the compact contractible 4-manifold (a cork) with a nonempty boundary ∂K. In conclusion, we
have

Theorem 2 a) There exist two nondiffeomorphic exotic R4s, R4
1 and R4

2 such that K ⊂ R4
1 ⊂ N1 and

K′ ⊂ R4
2 ⊂ N2. b) K′ is diffeomorphic to K relative to the nontrivial involution of its boundary τ(∂K).

The decomposition of an h-cobordism W5(N1, N2) is shown schematically in Fig. 2
A. Casson also showed that the nontriviality of 5-cobordism can be obtained by cutting off R4

1
in N1 and gluing it back by involution of its end in infinity. In fact, the reduction of this Casson
’non-compact’ procedure to compact K and the involution of ∂K was quite a surprise. Finally, it was
shown in Gompf, 2018 that these two procedures can be used interchangeably and the subsequent
generalization of this is possible to the G-slice corks and G-slice exotic R4 for quite general groups
G.

For the canonical example recognized by Akbulut we have ∂K = Σ(2, 5, 7) and its involutions
give rise to the change of the smoothness structures from R4

1 to R4
2. Note that such a change of the

smoothness structure on R4 cannot be described within GR formalsim, as well as the 5-cobordisms
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connecting regions of 4-dimensional spacetime are not entities describable on M4. This is the
motivation for considering some extension of GR which would lead to a close relation with the QM
formalsim.

N1 N2

K K’

R41 R42

W5(N1,N2)

C0(K,K’)

Figure 2. The decomposition of a nontrivial h-cobordism W5(N1, N2).

3. QM and the evolution of exotic spacetime 4-regions
In this section, we present arguments that the QM formalism can support the existence of exotic
4-regions in spacetime and their evolution as 5-cobordisms. The exotic R4s here are small, i.e.,
embeddable in standard R4. The 5-cobordisms certainly cannot be embedded in 4-spacetime and
can be a source of certain nonlocality detected in spacetime. However, some additional conditions
must be met. We start with the local modeling of spacetime by R4s patches that belong to local
Boolean models VB rather than to any universal a priori established universe of sets like the Von
Neumann cumulative proper class model V (reference to the constant V is a usual practice in physics.).
The varying local ZFC models do not follow any sheaf category localizations but rather are hybrid
methods of Boolean models and the relations between them. Reference to the local patches of the
spacetime 4-manifold (before the Lorentzian twist) as embedded also in local Boolean-valued models
VB has a nice advantage when one thinks about unification of GR and QM. This is the extension
of the diffeomorphism group of M4 by the group of morphisms between VBs where the latter are
generated by Aut B.

Diff (R4) ⊕ Aut VB.
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Thus, the equivalence principle of GR gains additional degrees of freedom connected with the
automorphisms of VB such that the local choice of flat R4 where gravitational energy vanishes, is
augmented by the local phase connected with the automorphism of models where R4 patches are
living, R4

VB1 ∈ VB1. Two flat local coordinate patches R4
1,R4

2 in addition to their flatness can be
distinguished by their local phase:

R4
VB1 ≃F R4

VB2 where F : VB1 → VB2 is the relative phase.

Instead of R4
VB1 we can write R4

1 and this is the product R × R × R × R in the ZFC model VB1 and
this R4

1 has nothing to do with exotic R4
1 as before. The context will clearly distinguish both objects.

Now the point is that this phase F has QM origins and on infinite-dimensional Hilbert spaces H∞

can be further reduced to the automorphisms of a Boolean algebra B. So, the extended equivalence
principle taking into account the relative phase F would read as follows.

[ExtEP] There is always possible in the microscale to choose a local coordinate frame
U = R4 and a Boolean ZFC model VB that it would erase the gravitational effects in U
and U would be entangled with another possibly spatially separated 4-region U ′ ≃ U
such that their entanglement induces gravitational effects nonlocalized to U .

We want to show that this ExtEP is probable by giving step by step explanation, but a more rigorous
justification will be published elsewhere. Let us reformulate ExtEP as

[ExtEP’] The choice of the local R4 patch in microscale in spacetime that erases all
gravitational effects always factorizes through exotic R4 and leads to the quantum
entanglement effects.

A full justification of this very strong statement will be the subject of a separate publication. Here we
focus on some elements of ExtEP’ making it probable. Let U = R4 and dimH = ∞. The ZFC twist
of QM (Król and Asselmeyer-Maluga, 2025) determines F : VB1 → VB2, F ̸= Id and:

a) a Boolean ZFC model VB where U = R4
B;

b) a Boolean ZFC model VF(B) where there is an accompanied flat UF = R4
F(B);

c) exotic R4
1 where UB is a flat local coordinate patch;

d) exotic R4
2 where UF(B) is a local flat coordinate patch.

a) means that once local flat U ′ = R4 is obtained in spacetime erasing gravitational effects, which
is legitimate due to EP, at the micro level there is room for a deeper representation of U ′ = R4

as U = R4
B in certain ZFC Boolean model VB. Even though the models VBs vary depending on

the specific region of spacetime, for dimH = ∞ there exists just a single model VB where B is the
atomless Boolean measure algebra. The different regions in spacetime refer to different automorphic
copies of F′(VB). However, F′(VB) are determined by the automorphisms F of B

∀F′∃FF′(VB) = VF(B), F ∈ Aut B.

Thus b) holds true.
The justification of c) and d) is based on the relation of the quantum lattice of projections L for

H∞ and the spacetime manifold M4 with a smooth atlas {Uα}α∈I . Again, crucial is the ZFC twist
of QM that assigns models VBα to the local patches Uα such that

Uα ≃ R4
α in VBα and VBβ = VFαβ(Bα) where Fαβ ∈ Aut B.
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We can characterize the border line between quantum and classical on the basis of a smooth atlas
U = {Uα}α∈I subordinated to the lattice L(H∞). Let B be a maximal atomless Boolean subalgebra
of projections chosen from L. B is the measure algebra. We call U a quantum atlas of R4 if the
corresponding projections from L belong to at least two different maximal algebras.

Lemma 1 If |U | ≥ 2 then U is quantum.

This follows from the 1 : 1 correspondence between Uα from U and VBα which gives at least
two maximal Boolen algebras B ⊂ L and consequently, it has to be determined at least a pair of
noncommuting observables subordinated to the different algebras correspondingly. In addition, we
have

Lemma 2 (Król et al., 2017, Corr. 1, Th. 3) If any smooth U on some R4 is quantum, then such a
smooth (R4,U ) has to be exotic R4.

On the contrary, |U | = 1 corresponds to the classical case and the standard smooth R4. Thus we arrive
at the conclusion that a quantum system in spacetime can modify its local standard smoothness toward
exotic R4 and this exotic R4 encodes information about the quantum system. The fundamentals are
the following

Lemma 3 A nontrivial 5-cobordism W5 can encode the change of base in Hilbert space H∞.

In particular, the projectors in one base are sent to some projectors in another base.

Theorem 3 The quantum entanglement of two spatially separated quantum systems at microscale is repre-
sented in 4-spacetime by the relation of two exotic smooth local 4-patches linked by a nontrivial 5-cobordism
W5 outside of spacetime.

Instead of the proof, we collect the main points with short commentaries leading to Theorem 3.

P1. Entanglement as a quantum effect in spacetime requires multiple local patches at the initial
interaction stage and in the final spatially separated stage.

P2. Any quantum system in spacetime determines a collection of local coordinate frames {qUp}p∈M4

in a way that: Any observable Oi, i ∈ O when measured in a state ψ0 ∈ H∞ determines the
value oi(ψ0) and the local flat R4

oi .
P3. On the microscale R4

oi becomes R4
i in the ZFC Boolean model VBi .

P4. When fragmented, the spacetime manifold M4 becomes a collection of flat local R4
i , i ∈ I and a

set of relations F′
ij : VBi → VBj between ZFC models hosting R4

i s.

P5. If the observables Oi,Oj, i ̸= j are compatible, i.e., measured simultaneously, then VBi = VBj , F′
ij =

id. If [Oi,Oj] ̸= 0 then F′
ij ̸= id and R4

oi is not identically diffeomorphic to R4
oj .

Fragmentation in P4. was explained in detail in Król and Asselmeyer-Maluga, 2025. The microscale
appearance of ZFC Boolean models in spacetime regions (P3.) has been systematically explored in
Król and Asselmeyer-Maluga, 2020; Król, Bielas, and Asselmeyer-Maluga, 2023. P2. and P5. are
direct consequences of the construction, and P1. follows from them and Lemma 1.

4. Discussion and perspectives
Theorem 3 opens several opportunities related to entanglement and its relation to spacetime regions;
however, they need a more thorough explanation. Nonlocality in this context means a relation
of two 4-regions that is nonlocal in spacetime. Note that the bridge W5(N1, N2) connecting the
regions is 5-dimensional and cannot be local 4-dimensional. However, these geometric data of W5
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{Q, P}V^B

 Q in VB Q’ (in VF(B) ) ≈ P (in VB)

B →F(B)

a) 

b) 

c) 

(Q+ P)(V^B x* V^F(B)) 

d) 

Q Q’

q q’

in M4

in M4

After measurement:

Nontrivial 5-cobordism C0

Figure 3. Entanglement and uncertainty in spacetime. a) In some conditions q-coordinates and p-coordinates assigned
to a single particle can become separated in 4-dimensions. Here p, q refer to (p, E), (x, t) correspondingly. They become 4-
dimensional local R4 patches, however with the relative phase F ∈ Aut(B). b) Q, P become entangled before measurement
in 4-spacetime M4. This leads to (P + Q) in the composed ZFC model VBx ∗ VF(B). c) The spacetime separation of P, Q and
the entanglement of them leads to the entangled regions in M4. The measurement of a particle’s P in VB is entangled with
the measurement of Q′ in VF(B) since Q′ in VF(B) corresponds to P′ in VB and the momentum is preserved in VB. d) After
measurement the 4-regions of P and Q coordinates contribute to spacetime as independent local regions.

should be augmented with a suitable quantum content to represent the entanglement. We will see
that it is possible and that W5 can represent a quantum entanglement.

First, following Lemma 1 if any open atlas U of R4 fulfils |U | ≥ 2 then it can encode quantumness.
This relies on the direct observation that if there is 1 : 1 correspondence of the maximal Boolean
algebras in L with open maps in U then given at least two distinct such maps we have to have at
least a pair of noncommuting observables O1,O2, [O1,O2] ̸= 0 or an observable O with at least two
nonperpendicular but different positive operator-valued measure (POVM) eigenspaces. However, to
measure entanglement in spacetime we need noncommuting observables let them be X, Y , [X, Y] ̸= 0.
Otherwise, the Bell-like inequality (e.g. CHSH) will never be broken, or the classical bound would
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never be exceeded. That is why to see entanglement as witnessed by X, Y in spacetime one needs
[X, Y] ̸= 0 and X, Y to be applied to both entangled systems. This is the reason for |U | ≥ 2 as above.

It follows another strong consequence, as stated in Lemma 2: Any smooth quantum R4 has to be
exotic R4. Thus, we find another heuristic justification for Theorem 3.

Let us derive a direct description of the nonlocal entanglement of observables [X, Y] ̸= 0 in terms
of W5. Let a(X), a(Y), b(X), b(Y) ∈ {a1, a2, b1, b2} be the possible outcomes of Alice and Bob. Let the
phase F′ : VB1 → VB2 sends X to Y. Thus, measuring X on Alice side gives rise to measuring Y on
Bob’s side. There are sets of local patches U1, U2, U ′

1, U ′
2 for Alice and Bob (primes), respectively. To

clarify presentation, let us refine the correspondence (which does not affect the construction) opens
in M4 to operators: ’subfamily {Ui, i ∈ J} of open local patches of M4’ ↔ ’eigenvalues {oi ∈ R, i ∈ J}
of any observable O’. This subfamily has relative phase F′ : VB → VB identity on VB, since the
projections on the eigenspaces of the same O commute. Still, the relative diffeomorphisms are not
identities f : R4 → R4, f ̸= id and this is the refinement that extends. The minimal case states that
there are at least two eigenvalues and two corresponding open charts (o1, o2; U1, U2) all in the same
model VB1. So, thus, U1, U2 are opens of R4

1 ∈ VB1 and any open cover of R4
1 has a cover that does

not allow for a single local chart R4
1. This also follows from taking two noncommuting X, Y (which

is essential to detect entanglement) and that X, Y are in the same model VB1 (Alice) and VB2 (Bob).
This means R4

1 is already exotic in VB1 (Lemma 2). A smooth open nontrivial subcobordism of W5

sends R4
1 to R4

2 in VB2 with the nontrivial relative phase F′ : VB1 → VB2, F′ ≠ Id. Then R4
2 is exotic

in VB2. The minimal extension as above on the commuting eigenprojections of O assigns the local
charts U1, U2 of M4 (for any smooth atlas) with nonidentity diffeomorphisms as transition maps.
After measurement, the result is described in one frame, U1 corresponding to a1 or U2 for a2 in VB1.
Similarly for the image U ′

1(b1) or U ′
2(b2) in VB2. Let us assume that U1, U2 in exotic R4

1 correspond
to the ends E1, E2 of R4

1 (Gompf and Stipsicz 1999). Then, in R4
2 they are assigned to the ends with

the following twist

U1 → E1 → U ′
1 → E′

2 in exotic R4
2 in VB2

U2 → E2 → U ′
2 → E′

1 in exotic R4
2 in VB2.

The entanglement of 4-regions in spacetime causes the instantaneous action at a distance: a measure-
ment of a1 in U1 in R4

1 enforces the measurement of b2 in U ′
2 in R4

2. The subtlety is a hidden, though
general property of spacetime: in the quantum regime open covers replace the spacetime manifolds.
In other words, spacetime is defined categorically in the classical regime from open covers. Thus, quantum
measurement in spacetime determines local micro patches which are related by the 5-dimensional
bridges-cobordisms.

The entire process behind the twist of local patches at spatially separated regions is based on
Theorem 2 and its equivalence to the twist of the ends at infinity of exotic R4

1 to obtain R4
2. This

twist is generated by the nontrivial phase F′
12 : VB → VB (Figs. 2, 3).

The appearance of such 5-dimensional bridges bears certain similarity to the recently formulated
proposal that possibly entanglement is nonlocal in spacetime due to connections via wormholes.
Currently we do not have arguments allowing for association of our geometric 5-bridges with
Suskind’s proposal. Let us note only that the source of exotic smoothness in spacetime has been
assigned to fragmentation due to extreme conditions in the singular regions like in black holes (Król
and Asselmeyer-Maluga, 2025). Whether similar conditions can generate an exotic matter needed
for opening wormholes has not been specified so far.

The appearance of exotic R4s in the quantum regime of spacetime is quite important and requires
discussion. Let us turn our attention to topological quantum field theory (TQFT) where the relation
of n-cobordisms and Hilbert spaces is in the heart of the constructions. The original formulation in
Atiyah, 1988 defines a TQFT symmetric monoidal functor Z : Cobn → Hilb from the category
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Cobn of n-cobordisms (morphisms) between n − 1 compact manifolds (objects) to the category of
finite-dimensional Hilbert spaces (objects) with linear operators (morphisms). This axiomatic version
of TQFT does not allow infinite-dimensional H∞. The reason is dualizability in Hilb, i.e. the
existence of evaluation ϵ and coevaluation η

ϵ : H∗ ⊗H → C; η : C → H∗ ⊗H.

To be well-defined, theese operations require finite-dimensional H and they allow for essential for
Atiyah - Segal TQFT gluing behavior

Z(M ∪N M ′) = Z(M) ◦ Z(N−1) ◦ Z(M ′). (1)

So, dualizability hence finite-dimensional H is essential. In the context of physics, ϵ corresponds
to anihilation, while η corresponds to the birth of states or particles. In our case of nontrivial 5-
cobordisms, local representability of atlases in VB requires dimH = ∞ since then B = BorR/Null is
the measure algebra that is universal among all maximal projection algebras in L(H∞). We claim
that this is not an accident, but rather a very crucial property of the formalism.

First, the extension of TQFT over H∞ would require complete extensions of the formalism, i.e.
the use of higher categories up to ∞-categories (Lurie 2009). Then one has to replace the target
category of finite-dimensional Hilbert spaces (Hilb,⊗) by a symmetric monoidal category in which
the objects assigned to 4-manifolds are dualizable in a way to support the gluing property (1). This
would be a way toward grasping the nontrivial smooth 5-cobordisms in the TQFT formalism and
eventually understanding the nonlocality of entanglement between the regions of spacetime. In fact,
the realization of the above would require quitting the TQFT structure and making smooth variants
of rigourous categorical field theories where various modifications of the tangential categorical
structure would be required.

Second, the inclusion of exotic smoothness on R4 in the TQFT formalism is again (if possible at all)
based on the extension of TQFT over dualizability realized in higher categories, as mentioned above
(Grady and Pavlov 2021). In particular, the extended TQFT should refer to infinite dimensional H.
This kind of cobordisms between open 4-manifolds would become the main player of the approach.

Our approach strongly indicates the role of H∞, exotic R4s and nontrivial 5-cobordisms. How-
ever, this comes from completely different points of view based on the automorphisms of B. As we
presented before, the ∞ dimension of H gives rise to the universal B = Bor(R)/Null for entire L(H∞)
but there is also the level of Aut B that distinguishes cases of finite and infinite dimensions.

Lemma 4 If a maximal complete Boolean algebra of projections in L is atomic, then all automorphisms of B
are extendable to the global automorphisms of L.

Lemma 5 If a maximal complete Boolean algebra of projections is atomless then there exist automorphisms
of B that are nonextandable over L.

But B = Bor(R)/Null is atomless, and thus there are local nonextendable automorphisms of B for
H∞. Moreover, these local automorphisms apply as local phases (gauges) in the description of exotic
R4s. Schematically, the local phase represented in Fig. 3a as F where Aut B generates Aut(VB) and
gives rise to the change of the exotic structure on R4

1. The nontrivial 5 subcobordism of two open
exotic R4s emerges (see Fig. 2) which is generated by the inversion of the boundary of the Akbulut
cork Σ(2, 5, 7). This inversion τ : Σ(2, 5, 7) → Σ(2, 5, 7) is due to the nontrivial local phase between
R4

1 → R4
2. Thus finally, the extension over infinite dimensional Hilbert spaces and allowing for

5-cobordisms between open 4-manifolds result from the bottom up approach reviewed in this work
and lies in the heart of top down approaches in higher categories and TQFT. We believe that this
phenomenon is the key toward better understanding the discripancy of QM and GR.



26 Jerzy Król iD et al.

Let us indicate yet another feature connected to the above. The negation of the Tsirelson conjec-
ture says roughly that the infinite dimension of H allows us to distinguish by finitely many quantum
correlation the situation where on H∞ two parties’ measurements of commuting observables and
the case where we have factorized Hilbert space H∞,finite

A ⊗ Hfinite,∞
B and the measurements are

on the factors independently. It appears that the nonfactorizable case is more strongly correlated
than the factorizable case. The original prove goes through Touring uncomputability of certain
sets of formulas describing both cases and showing that they differ by the degree in Touring classes.
Recently, an alternative proof was given by methods of maximal Boolean algebras Bor(R)/Null in the
lattice L and forcing relation in models of ZFC (Król and Asselmeyer-Maluga 2024). This indicates
that the coding of infinite dimension of H∞ along with the ZFC twist of QM are well-suited for
analyzing subtle phenomena of randomness in QM.
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