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Abstract

The aim of this contribution is to generalize a formula proved by Maurice de Gosson (de Gosson 2017)
about weak values in the context of the phase-space formulation of Quantum Mechanics (Rundle and
Everitt|2021), in order to express those weak values using tools coming from the harmonic analysis on Lie
Groups (Faraut|2006). A general formula which enables us to compute weak values is proved, in which
the integration on a Lie Group is substituted to the integration on phase—space, using Haar measures.
Then this formula is applied to SU(2) and SO(3) and also to the quotient group G/H, where H is a normal
subgroup of G.

Keywords: Grossman-Royer, Weyl-Heisenberg, weak values, Lie groups, pre- and post-selection, Haar measure, group
representation, special unitary group SU(2), special orthogonal group SO(3).

1. Introduction

The aim of this contribution is to generalize a formula proved by Maurice de Gosson (de Gosson|2017)
about weak values in the context of the phase-space formulation of Quantum Mechanics (Rundle and
Everitt|2021), in order to express those weak values using tools coming from the harmonic analysis
on Lie Groups (Faraut 2006)).

Maurice de Gosson (de Gosson [2017, pp.151-153) has shown that we can express a weak value in
general using the Cross-Wigner transform:

5 (WrlAi) _/ dzw
RZYI

e = Ty iy iy v

where a(2) is the Weyl symbol of the operator Aand W(lbf, ;) the Cross-Wigner Transform given by:

W) = (o [ dye ¥ =D wites ) ?

with z = (x, p) a point of the phase-space R2" : «, y and p are vectors.

In the particular case where A'is, for example, the projector TTy, = 7 11> )

(T ) ) W(biby)(z)
<n1|),>1|)f1pi = W - (Zﬂh) R dZ W
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The Cross-Wigner transform is related to the Weyl-Heisenberg groups acting on phase-space. This
is clear if we express <A>1b/'1bi as follows, according to de Gosson (de Gosson|2017), pp. 17 (2.1), 151
(12.18)), successively:

Wby i) = ()" (REDDI),

D= iy oo, 4= 96 WD)

. 1 (RE)bshpy)
@i = 7 /R R e (4

The operator R is the so-called Grossman-Royer operator which is nothing but the Stratonovich-
Weyl kernel which is well-know in the generalization of Wigner and cross-Wigner transforms
(Gadella et al. [1991; |Varilly| 1989).

Our aim will be to generalize this formula in the case the Weyl-Heisenberg group is replaced by
a Lie group (satisfying some constraints in order for the formula to be well-defined). The generalized
formula will be:

. . Tr{hpi) (b U (g)]
gy, =35 [ dul9 TIAU) <1>1ij£) ‘ © 6

where dp(g) is the Haar measure on G (we suppose it unimodular, i.e. its left-invariant Haar measure
is equal to its right-invariant Haar measure) and A is a constant related to the dimension of the
Tr[UT (g)l:) (bl
(W)
to a quasi-distribution of probabilities (Brif and Mann 1998); (Abgaryan, Khvedelidze, and Torosyan
2019) whose values can be negative. If h};) is an admissible vector in the sense of the generalized
coherent states (defined by groups acting on a very specific vector called an admissible one, see below),
the term Tr[UT(g)lp;) <1],)f|] = (YU T(g)hb;) takes the sense of a coherent state transform (which
becomes wavelets transform in some particular choice of group: describing translation and change of
scale). We refer here to the book of S. t. Ali, J.-P Antoine, J.-P. Gazeau (Ali, Antoine, and Gazeau
2000). The term Tr[A U(g)] plays the role of a Weyl symbol of A.

One can wonder why it would be amenable to rewrite the weak value <‘21>1b A, in these terms.

irreducible unitary and C-linear representation U of G. The term can be identified

The answer of such a question is that it allows us to perform its harmonic analysis connected
with a G-symmetry. Let us note that the Grossman-Royer is not so easy to write when we pass
from the Weyl-Heisenberg group to an arbitrary unimodular Lie group with a square-integrable
representation. If you give a group, then knowing the irreducible and square integrable representation
G — EndG g — U(g), you can immediately write the weak value without having to build an
analog of the Grossman-Royer operator if any.

We have to say that some attempts were made to get the formula we give here. The work of F.
Antonsen (Antonsen [1998) is very interesting and inspiring, from this point of view, but the formula
he proposed does not seem to be the right one (it differs by a hermitian conjugate, but is crucial to
us).

Our formula could also be adapted in the case of a symmetric space described by a coset G/H,
where H is a subgroup of G. In some interesting particular cases, this coset can be endowed with a
Kihlerian structure and thus could mimic a generalized phase-space as it is done in the geometric
quantization. It is worth noting that if our vector ;) is an admissible vector invariant under the
subgroup H, the coset G/H is nothing but a set of coherent states.
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This formula leads finally to corollaries, one of them being a formula introducing a kind of Moyal
product (Varilly and Gracia-Bonda|1989).

2. The main formula and its proof
In this section we have to use a lemma:

Lemma. Let §) be a Hilbert space and {li), 1), 1k), } an infinitely countable orthogonal basis
of $). Let also A be a linear (bounded) operator  — $. It is always possible to write

A= ol (6)
i

where o/ € C.

Indeed, let hp) be a ket of §. We have:

) = > wil) )
J

where )/ = (jhp). We can express z21|]> in terms of his components:
A= Y aily ®

Thus we can write successively:

Ahp)

DI
Jj i

Sl (i)
I.],

(Z ol </|) )
-

2=l
ij

And so we obtain, as expected:

Theorem. Let In) and l¢) be two states of the system: ), l@) € $. Then one has:

A*(mlAlg) = /G du(g) Tr{A U(g)] Trl lo) (nl UT(g)] )

where p(g) is the so-called lefi-invariant Haar-measure.
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In order to prove this theorem, let us begin - it is important - by writing the orthogonality relations
for these two states explicitly and clarify the contex:

(@nlen) (o'le) = [ dulg) Bl (nle) (10)
where
|Tlg> = U(Q)'ﬂ)
) = Ulh)
C = A

and where U(g) is a square-integrable representation of a locally compact Lie group G on §, with
A > 0. Moreover, ) and ') must be admissible kets, i.e.

I(n) :=/Gdu@)|<U(g)n|n>|2=/Gdu(g)|<n|U(g)|n>|2<oo (11)

Starting from 1! we can write

(MnIAin') (@'le)

/Cdu(g) (@IU(@) (U (g)lp)
/G du(g) ('1U(QIh) iUt (Q)1lp)

A (') (@'le)

Let us put, as a particular case, ') = li) and l¢’) = |j) (two basis kets of $), and insert the resolution
of the identity:

A (li) (o) = / du(g) (jlU(g) (Z 19) <k|) li) (iUt (Z'D <l|) o)
G k ]
[l S (U@ S o) it i
b

l

Two traces appear clearly on the right side ; so we may conclude :

A2 (i) (i) = /G dule) T (1U()] Trle) (U (9)] (12)

This formula expresses a property of the operator li)(jl. Using our lemma, we can generalize. Let
o/ be complex numbers for every pair i, j of indexes labelling the basis-kets of §) ; We can write
successively :

N2 (mladily () = /G dule) T i) (1U(Q)] Trll@) (iUt (9)]

A2 ol (Z o) g|) o) = /G dufo) TH (Z odf|i>g|) U] Tle) iUt (9)]
j ;

1. This theorem can be found in (Ali, Antoine, and Gazeau 2000, p.156.
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The two pairs of brackets contain the general expression of the operator A ; so we have obtained the
following :

A2 (mldlg) = /G dulo) T{U(Q)A] Trle) iU (9)] (13)

This formula enables us to obtain the weak values of the operator A by means of traces and of the

representation U(g). Indeed, taking n) = hpr) and 1) = ;) (respectively, post- and pre-selected
states) and dividing by (Wrhp;), we also obtain:

, (bpldhp;) ) - Tl (B 1UT ()]
¥ Sy~ e = [0 TUQA =0 1
which is nothing but .

3. Some corollaries
We enunciate the corollaries : the proofs are obvious, and we do not give them. Let us first introduce
a new function: the so-called generalised Weyl function (gWf) of the operator A:

Wlg) = TA U] (15)

Corollary 1 We get the following relation between gWft and traces of operator. As above, such
traces will play an important role:

N2 THA BY] = /G dulo) W) W3(9) (16)

Corollary 2 Another relationship the gWf and traces of operators can be proved:

N W) = / dule) W4 (o) T{U(g) U ()] (17)

It should be noted that the trace on the left-hand side plays the role of reproducing kernel for W (g)
if we define:

N K(g.¢) = THU() UH()] (19)

then in this way we can write:

/G du() Klg.d) W4(0) = W4(¢) (19)

Now a third formula, wich can be introduced by defining first a new product (similar to a
Moyal-Product).

Corollary 3 Let F and G be two functions belonging to L?(G, dn). We put

(F+L)(g) //du(g’ dug") 5 TIUZ) UE) UT@] Fig) L") (20)

We can establish the following:

Wagle) = Wy + Wi)o) (21)
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wich means that the gWf of the product of two functions is equal to x — product of the gWt of
the functions.

Corollary 4. It is a particular case of (17) for B = 1 :

N THA = / dulo) W50 (22)
G
Corollary 5. It is another particular case of (13) for A = U'(¢/) :

R = [ dul) W) TIUQ U] (23)

Corollary 6. Let H be the maximal compact subgroup of G, let Q € G/H (G = Q H). Let also
the two vectors In) and n’) be such that U(h)n) = ) and U(h)n’) = ’). Then we get :

o ) o) = [ (o) BT 910) Wi, )0 ey
where
W o)) = TU Qo) U Qle) = MIUT(Q)le) (25)
and hence
o T = [ au(@) Wy @ (@) 20

4. Two examples, G=SU(2) and G=S0(3).

In this section we try to show that our formula can be applied to two important groups in
Physics; we prove in every case that, with a suitable choice of the measure p, both left-hand and
right-hand sides of the equation are truly equal.

4.1. The main formula and SU(2). Let G be an abstract group represented by SU(2), i.e. there
exists a morphism U : G — SU(2) ¢ — U(g) and two conditions: U(g1¢2) = U(g1)U(g2) and
U(g)U(¢) = UT(9)U(g) = I (identity) for all g, ¢1, ¢» € G. We can write

v (% £ @)

vie- (5 7 )
And thus we have:

UUt) = UNQu( =(“°‘gf~“ﬁ Mfﬁﬁ){é ?)
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if and only if o + BB = 1. This condition is fulfilled with:

x = x1tix (29)
B = x3+ixy
where
x1 = cosO (30)
x> = sin® cosd
x3 = sin sind cos\p
x4 = sin® sind simp

Indeed, o + B = (x% + x%) + (x% + xﬁ) =1.
When G is the group of rotations, this definition seems to be very natural and we have 8 € [0,7],
¢ € [0,7r] and ¢ € [0, 27].

Let

e - (5, %)
and

el = (5, )
The product is

U(gl)U(gz) = ( 020(2 - BlBZ X1 Bz + [31&2 >

—Brox — &Py PP+ T X

If we define o3 = aty o — B1B, and oty B + B Xz, we see that

Ulg1)U(g2) = (_"}i B3> (31)

o3

That is exactly the same form as , as needed.
Our choice of the measure will be the so-called Haar measure :

dulg) = 1 sice sind dO ddp d (32)

2m2

The vectors will be of the form

) = (;‘;) (33)

o - (5

where 1;, @; € C. Their scalar product (. |.) will be represented by the matrix product. Provided with
the usual addition law of two vectors, the set of all these vectors forms a two-dimensional complex
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Hilbert space $), whose basis vectors are <(1)) and <(1)) . However, are these vectors admissible in the
sense of ? Yes. Indeed, it is easy to write

IlU(Qm)P? = fyomy —TaBng + B2 + Mool

Clearly, the right-hand side is finite (being composed only of a sinus and a cosinus). The integration
on SU(2) is made of integrations between 0 and 7t or 271, whose results are necessarily finite.

A= (Z; Zi) (34)

where all 4; € C. We must ensure that, representing an observable, the matrix A is hermitian, i.e.

As A, we choose:

A" = A, which can be written as follows:

a-(oe)-ar- (32
asz a4 ap» d4

Thus ay, a4 € R. Moreover, ay = a3 and (which is the same), a3 = @. So, A must be rewritten:

A- (Z; Zi) (35)

Let us now compute all the detailed elements of the relation . Successively:

o)l = <¢>1> (i ) - (cmm (sz> (36)

©2 @211 P2M2

It should be noted that the product l¢)(nl has been represented here by the usual tensor product of
twO matrices.

Our task is now to establish the relevance of the formula . Let us compute separately her left-hand
side and her right-hand side.

Left-hand side:

Raide) = ) (%) (%)

N ([ya1 Q1 + Mpdr @1 + 1202 + pas2) (37)

Right—hand side

Successively :

- (o8 a a xay + pa xap + pa
Ua = [ % BY (a1 a2 _ ([ aar+Pay  oap+Pay
B ) \a a4 —Bay +xay —Pay +xay
Note that we have represented the composed of the two operators U(g) and A by their usual matrix
product. We would insist on the fact that it is a choice. An other choice, for instance their tensor
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product, would have been possible. The ultimate justification of our choice and all the other choices
we have made lies in the relevance of the formula that we try to establish. Now:

TT[U(/Q)A] = xap + Pap — Baz + Xay (38)
t _ @1y @My (X B)
o) (nlU (o) <(sz <P2ﬂ2) <l3 [0d

((Pmﬂx @I @B+ (01ﬂ206>
@M X+ QoM — @2 B + P2

Trlle)IUT] = @ & + @128 — @2M1 B + @oflrax (39)
On the right-hand side of , the integrand is a product of three factors:
du(g) x THURA] x THlgp)mlUt()]
If we are explicit, we must write by introducing and :
1
do do d ) sin’0 sind
27
X <a1 (cosO + sind cosd) + ax(sind sind cos\p + i sind sind simp
—ap(sind sind cosp — i sin® sind simp) + ag(cos® — i sind cosd)))
X ((pfﬁl (cosO — i sin® cosd) + @175 (sind sind cosp — i sind sind simp

— 2T (sin0 sind cosp + i sind sind simp) + @275 (cosO + i sind cosd)))

Each pair of big brakets contains 8 terms; thus the product contains 64 terms, but unfortunately it is
not useful to write each of them. Why? In the course of the triple integration, many of them will
give a null contribution. The reason lies in the following definite integrals (which all clearly occur in
the integration process).

7T
/ 0 sin’0 cos® = 0
0
7T 7T
/ do cosdp =/ do cosd sing = 0
0 0

27T 27t 27t
/ A cosp = / A simp = A simp cosp = 0
0 0 0

The only terms of the integrand that contribute to the final value of the right-hand side of can

now be written:
1

do do 4 32 sin’0 sind <a1(p1ﬁ1 (60529 + sin’0 COS2(|)) +ay (pzﬁz(cosze — sin’0 c052¢)
T

+ay 1M, (5in29 sinzd) o’ + sin’0 sinzd) sinzlb)

—dr Poy (51'1129 sinz(b 60521.]) — sin®0 siﬂ2d> 51'11211))

—az(plﬁz(sin29 sinzc[) COSZI.I) — sin’0 51'112([) sinzlj))

—ax oMy (sin29 sin2¢ COS21.|) +5in’0 sin2d3 sinzlj))

+as@oN, (60329 +sin’ 0 coszd)))
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The inte ratlon on P introduces a multiplicative factor 271 ; if we take into account that cos®\+sin’ =
1 and cos®P — sin*p = cos2p, the new integrand must now be rewritten as

do do ﬁ sin’0 sing X 27‘C<a1(plﬁ1 (60529 + sin’0 cos2¢) +ay (pgﬁz(cosze — sin®0 coszd)
T

—aPoMy (Sinze sin®d cos2
—a2(p1ﬁ2(sin26 sin’ b cos2
—ax oMy (sin26 sinzd))

+ay (Pzﬁz(COSze + 5in®0 c032¢))

)
+ar 1T (sin*0 sin’ )
)
)

The fourth and fifth terms of this sum contain cos2\. The integration on 1 from 0 to 27 gives

27 cos2 = 0. Therefore, these two terms do not contribute to the final result and we can
rewrlte the terms of the integrand who really contributes to the right-hand side of (13) as

do d¢p x
1
o <ﬂ1@1ﬁ1 (51'1126 cos® O sing + sin*0 c032(13 sind) + a1(p2n2(sin29 c0s°0 sing — sin*0 coszd) sind)

+ a1, sin*0 si’d + ap (pzﬁlsin49 sin® ¢
as@1My (sinze 0520 sing — sin*0 cosz(b sind) + a4q)2ﬁ2(5i1129 0520 sind + sin*0 coszd) sind)

In order to provide the final result of the calculation, we need the following definite integrals:

m T
/ 40 sin*0 = / do si’dp =
0 0 2
7T
s
/ 40 sin*o = 3—
0 8
7T
/ do sind = 2
0

” 2
/ dd sind cos®Pp = =
0 3
7T
T
/ d0 sin0 cos?0 = —
0 8
7T
4
/ d si’dp = -
0 3
Final result : the right-hand side of :
1( ’(ﬂx2+3ﬂx2)+ 7(71x2 3T[x2)+7 *><37T><4)+ ’37T><4
—a = — X = a = — — X =) +a — X = a — X =
= 191N 8 8 3 19212 g 8 3 29112 8 3 221 8 3
+a *(Ex2—3—nxg)+a *(Ex2+3—ﬂ><%))
49111 g g 3 4@2 Mo 8 8 3
1 _ TT _ 7T _ T _ 7T
= ;(aﬂmm X 5 + a2y X 5 + 2P2M15 + a4@oMp X 5)
1 _
2(01(91111 + @My + ax @My + as@oMy )

And thus we get

[N

/SU( du(g) Tr{U(g)A] Trlle) nlUT(q 5(“1‘91ﬁ1 + axQMy + ax@omy + a4<Pzﬁ2) (40)
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This is exactly what we had obtained in , except for the multiplicative factor A2, The comparison
between and tells us, as expected, that:

N(nlalg) = / dulo) TH{U(9)A] Trlle) iUt (9)] (41)
SUQ)
provided A2 = { or
A= \% (42)

Furthermore we know that dim $ = 2 (the dimension of the Hilbert space $ we have initially
chosen). We may thus conclude that:

1
Vdim $

This last relation is in perfect agreement with the relation (8.49) of (Ali, Antoine, and Gazeau 2000):
as far as SU(2) is concerned, our goal is achieved.
Among all observables that are worth considering, are the square and the z-component of the spin,

namely 82 = (#2/4)0? and S, = (//2)c, for wich:
2 10y _
o = 4 (0 1) = 40y

/1 0
%= = o -1

For the first, we have ay = ay = (?/4), a» = 0; for the second, a; = a4 = (i/2), a» = 0. The weak values
are easy to write:

A = (43)

R W, _
miSle) = ;(Tmm + Tr92)
. h
miS:de) = ({101 — Me2)

2
And the general formula becomes:

A nlSle) = / du(g) Tr{U(¢)8%] Trlle) (iU (g)]
SUQ)

N niS.le) = / dulo) TH{U(9)8.] Trlle) (U (9)]
SUQ)

A similar formula holds for :S'y and S, but not for S4 = S, + 1'3'},, who are not hermitian.

4.2. The main formula and SO(3). Now, let G be an abstract group represented by SO(3) (For
instance, such a group could be the group of rotations in three-dimensionnal space). In this case,
U(g) will be a 3x3 matrix belonging to SO(3). Generally, we can note this matrix as follows:

i W W3
Ulg) = (w21 ux u3 (44)

U3y U3z 133
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We have written 1y, instead of u;,(g) for brevity. Recall that if U(g) € SO(3) the following relations
hold:

det Ufg) = 1 (43)

UT(U(@ = UQUT() = & (46)

On the other hand, if ¢ is a rotation, we can use the Euler’s angles ¢ € [0,27], 8 € [0, 7], € [0, 27]
and write:

cosp  —simp 0O 1 0 0 cosp —sinp 0
Ulg) = | simp cosp 0 0 cos® —sind sinp  cosp 0
0 0 1 0 sind  cosB 0 0 1

which can be rewritten as

cos\p cosd — simp cosO sing  —cos\ sind — simp cosO cosd  simb sin®
U(g) = | simd cosd + cos\p cosO sind  —sim) sind + cosp cosBcosdp  —cos\h sind (47)

sinB sind sinB cosd cos0

This form is well known in group theory and we verify and (#6). Moreover, if U(g) and U(g»)
are orthogonal, have a determinant equal to 1 and represent the rotations ¢; and gy, the product
U(g1)U(go) is also orthogonal, has a determinant equal to 1, therefore belongs also to SO(3) and is
also of a form such as ; it represents the rotation g1¢5 : [°

Ulg1) Ulg2) = Ulgigo)

We can write the state vectors as follows:

lp) = | @2 (48)

m
M) = |2 (49)
n3

where @; andn;, € C for i, k = 1,2, 3. Consequently it is natural to write:

®1 eI ©1M2 @173
lp) (Ml = o2 | @ (M T T3) =2l @22 @23 (50)
©3 @3N @3N 9373

We have represented the product of the ket l¢) and the bra (nl by the tensor product of two matrices.
We must ensure that the kets @) and ) are admissible, i.e. I{@lU(g)n)I? is finite:

u u u
ol o < (o o o 11 12 13 P1
(PlU@E)le)* = (@1 P2 @3) [ ua1 w23 ©2
uzr uzx w33/ \@3

|2

2. Such an affirmation can be found an proved in every standard book on Group Theory, v.g. W.M. Miller, Symmetry
Groups and their Applications, Academic Press, New York and London, 1972.
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That is effectively true because all terms of the matrix product are of the form ®;u;;,@;, which are
clearly finite.
As observable, we choose an hermitian 3x3 complex matrix:

. app a1z 413
A=|axn ax a3 (51)

as1 432 433

with a;, = @, a;; € R. Let us write the detailed expressions that we must compute in order to verify

the formula in this particular case. First, on the left-hand side of : we use :

R uiL o w1 W3 a1 a2 a3
U(QA = [ux uxn w23 a1 axp a3 (52)
U3l u3x W33 az| Az a3

To compute the trace, we need only to add the diagonal elements of the product:

Tr{U(Q)A] = (u1agy + uinazg + uizazt) + (up1arz + uapany + upzazy) + (uzrags + uspans + uzzasz) (53)
We proceed in the same way with :

_ _ _ T
1M P1M2 ©1M3 U1 U2 U3

loYmlUT() = | @2ty @2fla @iz | [ w21 w22 w23 (54)
@3N @32 9373 U3l U3y U3z
Sum of diagonal elements:
Tf[|(P><T1|UT(€)] = (@M1 + @1Mau12 + @1M3u13) + (2T U21 + @2Tou20 + QoT3123)
+@3M 131 + @3Maus2 + @3T3u33)  (55)

The left-hand term of :
a1 d12 a3 (O

Mmldle) = M ([ Mo M) [ an s | | @2
az axp az3) \@3

NMlAlg) = Wia1 @1 +Maaz @1 +M3a31 91 + T a1202 +M2a20 @2 + N3a32¢02
+H1a13Q3 + a3 @3 +N3a3393 (56)
Let us try to express the integrand on the right-hand side of :
du(g) x TH{U()A] x Trlle)(nlUt(g)] =
1

d0 d dp — sind

872
X ((unan +uppaz + M13a31) + (up1a12 + uppany + M23a32) + (M31013 +uzpazs + Msaaas))
X (((01ﬁ1u11 +@1Touin + ©1T3113) + (@27 21 + ©2Tpu + Qof3u23) +

+(@3Muz1 + @3z + (P3ﬁ3“33)) (57)
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Where, following and , we must use

uyp wiy W3 cosP cosd — simb cosO sing  —cos\p sind — simp cosO cosd  simp sin®
uy up upy | = | simp cosd + cos\p cosO sind  —sim sind + cos\p cosOcosp  —cosp sind | (58)
U3l U3y U3z sin® sind sind cosd cos®

Fully developed, the expression contains 81 terms to be integrated; they are of the form:

1 _
do d(]) dl.l) 8? sind Ujjlif] ©ny
It seems to be a long and complicated task. Fortunately, it is possible, using visually and using
the tables of definite integrals presented above, to see easily that 72 terms vanish. The remaining 9
terms are easy to compute: all are equal to 1/3, and correspond exactly to the 9 terms of . As an
example, we could compute:

1 _ 1 ) _
) sin u% az1 @13 = =) sin’® 3111211) az1 173

After integration:

—_

1 4 _ _
(8? X3 XX 27T>431(P1ﬂ3= = 9319113

W

We could also compute:

1 1,
—— sind uz ug3 a Ny = — sin” 0 sind si
= 31113 @313 = 3 ¢ simp

After integration:

1 4
—5 X = x 0 xO) 3 =0
(8712 3 a13P1M3

We may conclude:
A% (nlAle) = /50(3) du(g) Tr{U(9)A] Trlle) (U (g)] (59)

provided A2 = 1/3, 0r
_ L _ 1 _ 1
V3 \/dimSOB)  Vdim $

in agreement with (8.49) of (Ali, Antoine, and Gazeau 2000).
We have established our main formula in the general case, i.e. for any hermitian operator such

as A in 1i Among these operators, we can take the particular case of projectors Tly, My, T:

A (60)

) 1 0 0

Me=({0 0 0 (61)
00 0

X 00 0

m =10 10 (62)
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0 0
0 0) (63)
0 1

11 1 1
|n>=ﬁ1 |<P>=% 11 (64)

But we can also choose the kets ) = |1|)f> and l@) = hp;), respectively post-selected and pre-selected

states, in a process of measure during which the system is slightly perturbated. In this case, we obtain
the weak values we can write in this way:

(brlap;) o Tl (U (g)]
{Uphb) ’ /so(s) ulg) VA (i) “

4.3. The main formula and G/H. Let H be a normal subgroup of G, i.e. ¢H = Hg forall g € G.
Let also ;) be an initial state such as

U(hhbi) = ;) (66)

for all h € H. Then we also have (U is unitary) UT(h)hp;) = U= (B)hp;) = U(h~)b;) = hp;), because
h~1 e H. So,

UT(h)hp;) = hpy) (67)

Successively,

Myl = [ dulg) TURA Tk (U]

/ dulo) THU(g)A] Z each) (11U (gl
/w@nw@ﬂ%mwwwmwwm
/ dulo) THUA] (,1UT() Z(wa (ea ) )

l@@@nw@ﬂmwwwm> (69)

We want to show now how to adapt the main formula (13) in the case where the group G is replaced
by the coset G/H where H is an abelian maximal subgroup of G. Recall that every Lie algebra g can
be broken down into a Cartan subalgebra h and another one p.

=bh@p (69)
wich gives by exponentiation

G=H®P (70)
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Here, P = G/H. Let us define ¢ € G such as ¢ := hx with h € H and x € P = G/H. One has
() = dulh) du) @

‘We may rewrite :

Rla) = [ ) [ dul) HUBUWAT Ui (72
; H G/H

[ ntt) [ duts) TIUGRA] U0 )
H G/H ;

(73)

Now, we must note that the proof of has not used the hermiticity of the operator A. This means
that is true whether A is hermitian or not: A does not need to be observable. Thus the relation
is true for every linear operator A (however, if we want to give meaning to the notion of weak
value, then A must be hermitian !). Let us define B= AU(h~!). We can write:

N (ylBhp;) = /H du(h) - dy(x) Tr{U () B] (WU (x) UT (R)hb7)
AU ) = [ dulh) [ ) THEUG)] AU U )
(74)
But (left-hand side), U(h—")hp;) = hp;) and (right-hand side), UT(k)p;) = hp;) . Then:
Npae) = [ ) [ ) TAUGURUE] Ut )
- H G/H -
(75)
And
Rl = [ ) [ duls) TEAUG] WU )
(76)
We could define "volume” of H as the measure of H :
Vol(H / du(h) (77)
So, the weak value of A is given by
|ARp; o . lUT ()
WA Vo) [ g mpavg I o)

(Wrhpi) N Jom (Wrhpi)

It is possible to give another form to this formula. Indeed we have, if the Ik) forms a basis of § :

WAU @) = AU (Zﬂe Iel)hp

Z<¢;‘|UT(X)|L’></€|¢1'>

b
> (ki) (W IUT ()1

L

Tr{hbi) (b 1UT ()] (79)
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Formula becomes :
(WA vol(H) . Tr{hi) (W1 UT ()]
Wby~ N Jom ) THAU)] (Wrhpi) (80)

And the right-hand side of contains only traces.

An interesting example is given by:
G=SO(3) H=SO() P=32

where SO(3)/SO(2) is nothing but the sphere S,.

5. Conclusion.

The main formula and his extension to coset are probably not entirely new (if we consider
the theory of generalized coherent stated 4 la Ali-Antoine-Gazeau), but the formulae we have proved
are useful in the quantum weak value context. Furthermore, relation could be interesting if we
want to consider quantum theory starting from the phase space, which is taken as homogeneous
Kihlerian manifolds. In this theory, formula (68) enables us to express the transition amplitudes.
The generalization of formulae and - l in the cases of noncompact groups is not obvious
because we need some square-integrable irreducible representation. But in certain cases it is pos-
sible. In particular in situations where the coset spaces are the so-called classical domains (deeply
studied by Jean-Pierre Gazeau, (Gazeau)|1989): SO(4, 2)/SO(4) @ SO(2), SO(3,2)/SO(3) ® SO(2),
SO(2,2)/SO(2) ® SO(2), SO(1,2)/SO(2). All these manifolds are kihlerian manifolds. The wave
functions are to be chosen as elements of Hilbert spaces of analytical functions of such domains and
square integrable with an appropriate (Bergman) measure.

6. Ageneral perspective on this work

The work on weak measures is done in the context of a joint Belgian research project (ARC, “Action de
Recherche Concertée”) gathering physicists (Y. Caudano, L.Ballestros, ].-P. Fréché) mathematicians
(T. Carletti, W. Delongha), logicians and philosophers (B. Hespel, V. Degauquier) of the University
of Namur (Naxys and Esphin Research Institutes), dedicated to the interpretations of weak values
and measurements. The weak value of an observable of a system is obtained during a very weak
interaction (implying as little perturbation as possible) with the system constrained by imposing
a pre-selected state and a post-selected state. The weak values have strange behaviors (they can
be complex and go sometimes outside the usual spectrum) and in some cases they are related to
values predicted by Bohm theory (thus they are interesting when you are interested in the study of
interpretations of Quantum Theory). Weak values and measurements addressed many philosophical
questions because. For example (as it was considered in a thought experiment imagined by Wheeler
of a modified two-slit experiment) if you are fixing photons in a preselected state and after a long
time (when photons are already flying away the source!), you chose various post-selected states, all
these choices change radically the way you are describing the past. How can we interpret this fact?
It is difficult to admit that present is influencing the past. Is it maybe rather convenient to think
that modification of present knowledge of the future can modify the way we are understanding the
past. But there is here the place for a debate on the structure of time (see Thomas Hertogh, On
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the origin of time. Stephen Hawking’s final theory, Penguin Books, 2023). Our personal work
is also connected to applications of weak measurements in cosmology (see the seminal works of
Brout, Englert and Spindel for example). Post-selected states correspond here to prescribed final
state of the universe. Here the knowledge of a final state could influence the way one is telling the
origin of the universe... This addressing many interesting philosophical questions. Technically,
we have to consider here quantum theory in curved space-time. Without entering completely into
this tough subject, we have modestly begun to tackle the problem of defining weak values in the
context of a curved space-time. We have chosen to begin with the Wigner phase-space formalism
of Quantum Theory (based on functions: Wigner and cross-Wigner transforms, Weyl symbols of
operators, ...) and adapt it to the case of curved phase-space (being non trivial Kihler manifolds).
The paper presented here is to be considered in such a context and try to search a way to express
a weak value in the case of phase-space endowing with Lie group symmetry. This could serve as
toy-model to explore weak values in the curved phase-space context (see the important work of
Maurice de Gosson, The Wigner Transform, World Scientific, 2017). Mathematically our result can
also be considered in the field of harmonic analysis on Lie groups and as a way to perform the Lie
group harmonic analysis of a weak value.
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