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Abstract
The concept of closures of manifolds in the category of Sikorski’s differential spaces is applied to a
description of the flat FRW models. The smoothness condition coming from this approach constitutes
a strong restriction on the time dependence of the scale factor and on the energy density of the matter
content of the resulting model. We demonstrate that our model agrees with the H(z) dependence obtained
with the help observational data concerning the type Ia supernovae, BAO and the CMB peaks tests.
The model contains a string gas, two types of domain walls, four types of cosmological vacuums and a
cosmological constant whose value — determined by the model — agrees with the results of the Planck
Mission.
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1. Introduction
Almost at the beginning of the general relativity theory researchers noticed problems connected with
the initial singularity in cosmology. There have been several attempts to overcome these problems.
Below we list a few of them.

The first approach is based on the assumption that there is a possibility to construct a classical
gravity theory that is free of singularities. In this strategy the potential alternative theory of gravity
must contain GR as the weak field limit Einstein 1945, 1948, 1955. One of the proposals of such
a theory is based on non-Riemannian geometry Cornish and Moffat 1994,Damour, Deser, and
McCarthy 1993,Dobrowolski and Koc 2015 in which the metric tensor can be split into the symmetric
part and the skew-symmetric part. From the mathematical point of view non-Riemannian geometry
enables to circumvent the assumptions of the Hawking – Penrose singularity theorems Hawking
and Penrose 1970.

The second approach involves noncommutative geometry Connes 1994; Madore 1999; Gracia-
Bondía, Várilly, and Figueroa 2001; Heller, Sasin, and Lambert 1997; Heller, Pysiak, and Sasin 2005;
Heller et al. 2015. This vast branch of modern mathematical physics aims at reconstructing the
differential-geometrical notions more algebraico (most notably, in the language of Connes’ spectral
triples), and then, by abandoning the requirement that the algebras involved be commutative, it is
believed to provide a unified mathematical framework for the study of both relativity and quanta. In
doing so, the very notion of a space-time point is replaced with a more structuralized, global object,
and the troublesome singularities no longer appear.

In the third approach it is presumed that all singularities disappear at the more fundamental,
quantum level of the gravity theory Rosenfeld 1930b, 1930a; Rovelli and Smolin 1995a, 1995b;
Markopoulou and Smolin 1998; Barrett and Crane 1998; Baez and Crane 1998, 1999. It is believed
that the relation between quantum gravity and general relativity is similar to the relation between
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classical hydrodynamics (i.e. a theory that admits singularities) and the microscopic description of a
fluid which, due to the finite size of the molecules, is free of singularities.

However, one might perceive the initial singularity not as a theoretical obstacle to be overcome,
but rather as a real feature of the Universe. The main stream of research based upon this view comprises
the theories of singular boundaries: g-boundaries, b-boundaries, c-boundaries, a-boundaries R.
Geroch 1971, R. P. Geroch 1968, Schmidt 1971, Geroch, Kronheimer, and Penrose 1972, Geroch
and Horowitz 1979, Scott and Szekeres 1994 and others.

The method approach we adopt in the present paper in the same vein as the last of the above-
mentioned ones. Since the category of manifolds is a subcategory of the category Sikorski’s differential
spaces (called d-spaces for short) , therefore one can define closures of the flat Friedmanian model
manifolds which are d-spaces Sikorski 1967, Sikorski 1971, Sikorski 1972, Waliszewski 1972, Sasin,
Heller, and Multarzyński 1989, Gruszczak, Heller, and Multarzynski 1988, Gruszczak and Heller
1993. As a final result we obtain the so-called smoothness equation which we discuss in Section 2.
However, this discussion will be descriptive. We do not want to burden this paper with an excessive
mathematical abstraction, but rather we want to concentrate on results that may have meaning in
cosmology.

A method for solving the smoothness equation is presented in Section 3. The explicit form of the
solutions of the smoothness equation is shown in Section 4 (see also Gruszczak 2014). Discussion on
the matter content of our model is carried out in Section 5. In Section 6 we compare our model
with the observational data. The final discussion and summary are provided in Section 7.

2. On the smoothness equation
We restrict our considerations to the homogeneous, isotropic and flat cosmological models described
by the FRW metric

g = c2dt2 – a2(t)
(

dx2 + dy2 + dz2
)

, (1)

where a(t) is the scale factor, t the cosmological time. In addition, we assume that the model has an
initial singularity at t = 0, a(t = 0) = 0, and starts its evolution with the velocity ȧ(t = 0) > 0.

The serious problem of the FRW cosmological models is that their manifold structures break
down at t = 0 and therefore this moment cannot be included in the description of their time evolution.
The solution we propose below is to perform the closure of the flat cosmological models in the class
of differential spaces, objects more general than manifolds. This enables one to prolong the time
orientability notion to the edges of the closures –called the differential closures (d-closures)– and thus to
include the moment t = 0 into our investigations. Let us emphasize that this prolongation cannot be,
in general, realized by means of the singular boundaries from the classical theory of singularities (see
Heller et al. 1992). Our method was discussed in detail in Gruszczak 2014.

Including the beginning of time t in the above-described way imposes the following restrictive
condition, called the smoothness equation

ȧ(t) = f
(

a(t), a(t)
∫ t

0

dτ
a′(τ)

)
, a(t = 0) = 0, f (0, 0) > 0, (2)

where f ∈ C∞(R2,R) is a function such that the physical dimensions of the left and right sides of
the smoothness equation are the same. The condition f (0, 0) > 0 comes from the physical assumption
that our Universe starts its expansion with positive "velocity".

For example, if we assume that f is an affine function of variables f (x, y) = β + γ1x + γ2y, where
(x, y) ∈ R2, γ1,γ2 ∈ R and β > 0 then the smoothness equation (2), after rescaling, takes the form

˙̄a(t) = 1 + γ1ā(t) + γ̄2ā(t)
∫ t

0

dτ
ā′(τ)

, ā(t = 0) = 0, (3)
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where ā(t) := a(t)/β and γ̄2 := γ2/β. Equation (3) will be called the simplest smoothness equation.
Cosmological models (1) with scale factors satisfying the smoothness equation we shall call the models
evolving smoothly from the very beginning or the smoothly evolving models or the SE-models for brevity.

The smoothness equation was introduced in Gruszczak 2014. On the physical side, it guarantees
that for models (1) satisfying the equation the time orientability given by the vector field representing
the cosmological time t can be smoothly prolonged to the moment t = 0. It is worth adding that in
the theory of d-spaces the smoothness notion is more general than in the theory of manifolds.

3. The method of solving the simplest smoothness equation
In order to solve the smoothness equation (3), let us introduce the following auxiliary function

v̄(t) =
∫ t

0

dτ
ā′(τ)

. (4)

Since in model (1) one has ˙̄a(t = 0) > 0, the domain [0, tf ] of v̄(t) is defined by the condition ˙̄a(t) ⩾ 0.
Depending on the values of γ1 and γ̄2, the value of tf is either finite or infinite. The v̄(t) is an
increasing function in its domain and therefore it has the inverse function t(v̄). It is worth noticing
that, in a similar vein, the assumption ˙̄a(t) > 0 ensures the existence of the function inverse to ā(t)
denoted as t(ā).

Now, we can rewrite the smoothness equation in the form featuring v̄(t)

˙̄a(t) = 1 + (γ1 + γ̄2v̄(t))ā(t). (5)

After the change of variables ˙̄a(t) = dā(v̄)/dv̄|̄v=v̄(t) · dv̄(t)/dt = dā(v̄)/dv̄|̄v=v̄(t) · ˙̄a(t)–1 we obtain the
formula

˙̄a(t)2 = dā(v̄)/dv̄|̄v=v̄(t)

which enables one to write the smoothness equation in the following useful form

dā(v̄)/dv̄ = (1 + ā(v̄)(γ1 + γ̄2v̄))2, ā(v̄ = 0) = 0. (6)

This equation is solvable by elementary methods. Its solution depends on the two external parameters
γ1 and γ̄2 coming from the smoothness equation (3).

This enables us also to set down the relation between the variables t and v̄ or, in other words, to
find the function t(v̄) inverse to the function v̄(t). Indeed, since dv̄/dt = 1/ ˙̄a(t) therefore the inverse
function satisfies

dt(v̄)/dv̄ = ˙̄a(t)|t=t(̄v) =: ˙̄a(v̄). (7)

The function ˙̄a(t) is given by the smoothness equation (3). Its value at t = t(v̄) is ˙̄a(v̄) = 1 + ā(v̄)(γ1 +
γ̄2v̄). Thus, equation (7) takes the following new form

dt(v̄)/dv̄ = 1 + ā(v̄)(γ1 + γ̄2v̄). (8)

The scale factor ā(v̄) is a known function. It is the solution of equation (6). Therefore, equation
(8) is integrable and its solution with the initial condition t(v̄ = 0) = 0 has the form

t(v̄) =
∫ v̄

0
(1 + ā(v̄′)(γ1 + γ̄2v̄′))dv̄′. (9)

It is worth to notice that the pair (ā(v̄), t(v̄)) is a parametric solution of the smoothness equation (3),
where ā(v̄) satisfies equation (6) and t(v̄) is given by formula (9).
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4. Solutions of the simplest smoothness equation

Flat cosmological models with scale factors satisfying the simplest smoothness equation were studied
in Gruszczak 2014. In the case γ1 < 0 and γ2 > 0 the SE-model turned out to exhibit an interesting
evolution which is qualitatively consistent with the results of observations of type Ia supernovae.
Therefore, let us restrict further considerations to SE-models with the parameters from the range
γ1 ≤ 0 and γ̄2 ≥ 0.

The smoothness equation written in the form (6) is of the Riccati type. Its solution with the
initial condition ā(v̄ = 0) = 0 reads

ā(v̄) =
1√

γ̄2 coth(
√
γ̄2 v̄) – γ1 – γ̄2v̄

, γ̄2 > 0 (10)

and in the case γ̄2 = 0 it is given by the formula

ā(v̄) =
v̄

1 – γ1v̄
. (11)

Let us notice that in the case γ̄2 > 0 the final moment of evolution corresponds to ā → ∞.
Therefore, the final value v̄f of the parameter v̄ is the solution of the following equation

√
γ̄2 coth(

√
γ̄2 v̄f ) – γ1 – γ̄2v̄f = 0. (12)

Thus, in this case v̄ ∈ [0, v̄f ).

When γ̄2 = 0 the domain of ā(v̄) is the set [0,∞).
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Figure 1. Scale factor ā(̄v) for the SE-model with γ2 = 0 and γ1 ∈ R. When γ1 = 0 the model expands with a constant
velocity. For γ1 > 0 the SE-model accelerates from the very beginning while for γ1 < 0 it decelerates and ā(̄v) → āf = 1/|γ1 |
when v̄ → ∞. In the last case the model becomes the Minkowski space-time in the final stage of its evolution .
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Figure 2. The re scaled scale factor
√
γ̄2 ā(̄v) of the SE-model in the case γ2 > 0 and γ1 ∈ R. Every curve on the plot has a

vertical asymptote at v̄ = v̄f , where v̄f satisfies equation (12). When γ1 ⩾ 0 the model accelerates from the very beginning.
For γ1 < 0 the model initially decelerates but at moments indicated by small black points on the graph an accelerated
evolution commences.

5. On the matter content of the SE-model
In the standard cosmology one employs the following methodological scenario. One assumes what
kind(s) of fluid(s) permeate(s) the cosmological model and then, on this basis, deduces the evolutionary
properties of the cosmological model solving Friedman’s equations. In the case of the flat models,
which we shall discuss in the current paper, the equations read

ε̃(t) :=
3
κc2

ȧ(t)2

a(t)2
, p̃(t) := –

1
κc2

(
2

ä(t)
a(t)

+
ȧ(t)2

a(t)2

)
, (13)

ε̃ = ε +Λ/κ, p̃ = p –Λ/κ, (14)

where κ = 8πG/c4,Λ is the cosmological constant and ε and p denote the energy density and pressure
of all assumed kinds of fluids filling up the model investigated. The form of ε̃ and p̃ in formula (14)
depends on our choice. We can work with or without the cosmological constant Λ. If we decide to
work with a nonzero cosmological constant then the Λ appears in the solutions of equations (13) as
an additional parameter.

In the present paper we reverse the standard methodological scenario outlined above. We assume
that our model evolves from the initial singularity according to solutions (10) or (11). On this basis
we try to reconstruct the matter content of the SE-model with the help of equations (13). Now ε̃
and p̃ are known functions defined by the right-hand sides of equations (13). They do not depend on
any additional parameters, in particular on Λ. Therefore, in the present context, we cannot simply
choose Λ to be zero or non-zero. However, we can still employ physical argumentation. Concretely,
it is reasonable to assume that all forms of the usual matter should ‘disperse’ as the Universe expands
to infinite size. In that case, the energy density ε and pressure p of every kind of fluid should vanish.
This requirement can be expressed as follows: lima→∞ ε(a) = 0, lima→∞ p(a) = 0. Therefore, if only
limits of our ε̃(a) and p̃(a) satisfy the following condition

lim
a→∞

ε̃(a) = – lim
a→∞

p̃(a) ̸= 0 (15)

we can define, with the help of formulas (14), the cosmological constant Λth in our model

Λth := κ lim
a→∞

ε̃(a). (16)
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Let us return to the discussion of the SE-model. First we notice that the Hubble function can be
obtained with the help of the smoothness equation (3)

H(t) := ˙̄a(t)/ā(t) = 1/ā(t) + γ1 + γ̄2v̄(t). (17)

Then equations (13) for solutions of the smoothness equation can be rewritten in the form

ε̃(t) = 3H(t)2/κc2, (18)

p̃(t) =
2

κc2ā(t)
[H(t) – γ̄2/H(t)] – 3H(t)2/κc2. (19)

Since the solutions of the smoothness equation are known functions, the right-hand sides of formulas
(18) and (19) are treated now as the definitions of ε̃(t) and p̃(t) respectively.

Now, H(t) can be expressed in the form dependent on ā

H(ā) := H(t)|t=t(̄a) = 1/ā + γ1 + γ̄2v̄(ā), (20)

where v̄(ā) := v̄(t)|t=t(̄a) is the inverse function of the known scale factor ā(v̄) (see formulas (10) and
(11) ). This form of H is suitable for the following discussion.

Thus, also the ε̃ in our model can be presented in the form depended on the variable ā

ε̃(ā) := 3H(ā)2/κc2 =
[

3
ā2 +

6γ1
ā

+ 3γ2
1 + 3γ̄2

2v̄(ā)2 +
6γ̄2v̄(ā)

ā
+ 6γ1γ̄2v̄(ā)

]
/κc2. (21)

This expression, however, not yet ready redy for interpretation because the function v̄(ā) is not given
in an explicit form. Nevertheless, one can extract certain properties of v̄(ā) in the neighbourhood of
ā = 0 by means of the series expansion of ā(v̄) at v̄ = 0. The first terms of the inverse series read

v̄(ā) = ā – γ1ā2 +
1
3

(3γ2
1 – 2γ̄2)ā3 + ... . (22)

This means that v̄(ā) can be written as

v̄(ā) = ā(1 +ψ(ā)),

where the map ψ satisfies the condition ψ(ā = 0) = 0. Thanks to this observation we can set down
the correct form of the vacuum term in formula (21)

ε̃(ā) =
[

3
ā2 +

6γ1
ā

+ 3(γ2
1 + 2γ̄2) + 3γ̄2

2v̄(ā)2 + 6γ̄2ψ(ā) + 6γ1γ̄2v̄(ā)
]

/κc2. (23)

To recognize fluids that fill up the SE-model we apply the traditional interpretation method
which depends on the form of ε̃(ā) and the barotropic index w usually used in cosmology. Necessary
formulas for p̃(ā) can be obtained with the help of equality (19) and the composition p̃(ā) = p̃(t)|t=t(̄a).

In order to guess the matter content of the SE-model with the late acceleration, (γ1 < 0, γ̄2 > 0),
let us first discuss its behavior for γ-parameters satisfying: (γ1 = 0, γ̄2 = 0), (γ1 < 0, γ̄2 = 0) and
(γ1 = 0, γ̄2 > 0).

Example 1 The SE-model with γ1 = 0 and γ̄2 = 0.
In this case formulas (19–20) yield

ε̃(ā) = 3/κc2ā2, p̃(ā) = –1/κc2ā2. (24)



Kielnarowa Review 37

In this model there are no reasons to introduce the cosmological constant and therefore ε̃ = ε and
p̃ = p. Thus, the model is filled with a string gas with the equation of state p/ε = –1/3. The string gas
causes an unlimited expansion of such a universe with the constant velocity ˙̄a = 1 (see Figure (1)). It
is worth to notice that cosmological models with a nonzero curvature exhibit a similar dependence ε
of a ( ε ∝ 3/a2). One can say that the string gas substitutes the curvature in flat cosmological models
Dąbrowski and J. 1989; Dąbrowski 1996; Kamenshchik and Khalatnikov.

Example 2 The SE-model with γ1 < 0 and γ̄2 = 0.
In this case formulas on effective energy density and pressure have the form

ε̃(ā) =
(

3
ā2 +

6γ1
ā

+ 3γ2
1

)
/κc2, (25)

p̃(ā) =
(

–
1
ā2 –

4γ1
ā

– 3γ2
1

)
/κc2. (26)

From the viewpoint of the traditional interpretation our model is filled with three types of fluids:
a string gas, domain walls and a cosmological vacuum. These class of models were considered in
papers Dąbrowski 1996; Dąbrowski and Larsen 1995. In what follows we shall call the domain walls
and the vacuum the γ1-domain walls and the γ1-vacuum respectively. Let us notice that one can
interpret the γ1-domain walls term as a potential term since γ1 < 0.

Let us look once more on the evolutionary properties of the SE-model shown in Figure 1. The
scale factor ā is an increasing function of the variable v̄ and limv̄→∞ ā(v̄) = 1/|γ1| =: āf . It means
geometrically that such a universe asymptotically becomes the Minkowski space-time for every
γ1 < 0. This fact is mirrored in the behaviour of ε̃(ā) at āf

lim
ā→āf

ε̃(ā) =
(

3γ2
1 + 6γ1|γ1| + 3γ2

1

)
/κc2 = 0+. (27)

It means that the γ1-vacuum is not a passive vacuum but rather that it interacts with the string
gas and the γ1-domain walls causing that the final energy density and the final pressure to be zero.
There are no reasons to introduce the cosmological constant in this model.

Example 3 The SE-model with γ1 = 0 and γ̄2 > 0.
Now formulas on ε̃(ā) and p̃(ā) look as follows

ε̃(ā) =
[

3
ā2 + 6γ̄2 + 3γ̄2

2v̄(ā)2 + 6γ̄2ψ(ā)
]

/κc2, (28)

p̃(ā) =
[
–1/ā2 – 6γ̄2 – 3γ̄2

2v̄(ā)2 – 4γ̄2ψ(ā) + 2γ̄2
2āv̄(ā)/(1 + γ̄2āv̄(ā))

]
/κc2. (29)

Analyzing subsequent terms in (28) one can see that the our model contains the string gas, a
cosmological vacuum and an unknown fluid represented by the term 3γ̄2

2v̄(ā)2/κc2. The last term
one can interpret as a potential energy density since 6γ̄2ψ(ā)/κc2 ≤ 0.

An additional interpretation is provided by the comparison of ε̃ with p̃. The barotropic indexes
w of the four terms in ε̃ and p̃ have the following values –1/3, –1, –1 and –2/3, respectively. It is
a surprising fact that the unknown fluid represented by the term 3γ̄2

2v̄(ā)2/κc2 can be linked with
a vacuum and that the potential energy density term 6γ̄2ψ(ā)/κc2 can be associated with domain
walls. The last term in p̃(ā), which is a perturbation of Dalton’s law, is a suggestion that there is an
interaction between (some of ) the fluids contained in the SE-model.

The fluids represented by the terms 3/κc2ā2, 6γ̄2/κc2, 3γ̄2
2v̄(ā)2/κc2, 6γ̄2ψ(ā)/κc2 appearing in

formula (29) will be called the string gas, the γ2-vacuum, the γb
2-vacuum and the γb

2-domain walls,
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respectively. The superscript "b" refers to the fact that the fluid in question is defined by means of
the barotropic index.

More information on our SE-model is provided by the asymptotic behaviour of the terms in the
formulas for ε̃(ā) and p̃(ā)

ε̃f := lim
ā→∞

ε̃(ā) =
(

0 + 6γ̄2 + 3γ̄2
2v̄2

f – 6γ̄2

)
/κc2 = 3γ̄2

2v̄2
f /κc2, (30)

p̃f := lim
ā→∞

p̃(ā) =
(

0 – 6γ̄2 – 3γ̄2
2v̄2

f + 4γ̄2 + 2γ̄2

)
/κc2 = –3γ̄2

2v̄2
f /κc2, (31)

where ε̃f and p̃f denote the effective final energy density and the effective final pressure of matter. In
formula (30) the γ2-vacuum term is canceled by the γb

2-domain walls term while in formula (31) the
γ2-vacuum term is canceled by the γb

2-domain walls term and the term perturbing the Dalton’s law.
It indicates that between the γ2-vacuum and the γb

2-domain walls there is an interaction. We have
no suggestions that the string gas and the γb

2-vacuum are interacting fluids in the discussed mixture.
Let us notice that ε̃f and p̃f satisfy the following inequality ε̃f = –p̃f = 3γ̄2

2v̄2
f /κc2 ̸= 0. Therefore

we can introduce the cosmological constant Λth = κε̃f = 3γ̄2
2v̄2

f /c2 to our model. Plugging the above
formulas for ε̃, p̃ and Λth into (14), we obtain

ε(ā) =
[

3
ā2 + 6γ̄2 + 3γ̄2

2(v̄(ā)2 – v̄2
f ) + 6γ̄2ψ(ā)

]
/κc2, (32)

p(ā) =
[
–1/ā2 – 6γ̄2 – 3γ̄2

2(v̄(ā)2 – v̄2
f ) – 4γ̄2ψ(ā) + 2γ̄2

2āv̄(ā)/(1 + γ̄2āv̄(ā))
]

/κc2. (33)

Evidently, limā→∞ ε(ā) = limā→∞ p(ā) = 0. But the analogous limit for the barotropic index

lim
ā→∞

w(ā) = lim
ā→∞

p(ā)
ε(ā)

= lim
v̄→v̄f

p(v̄)
ε(v̄)

= –2/3

leads to an interesting conclusion that the final evolution stage of our model is dominated by the
γb

2-domain walls.
The discussed SE-model filled with the string gas and the γ2-fluids is subject to the accelerated

expansion to infinity from the very beginning (see Figure 2).

Now, we are ready to discuss the matter content of the SE-model with the late acceleration (see
Figure (2)).

Example 4 The SE-model with γ1 < 0 and γ̄2 > 0.
Almost all properties of the previous examples are now cumulated. Formulas on ε̃(ā) and p̃(ā)

have now the more complicated form

ε̃(ā) =
(

3
ā2 +

6γ1
ā

+ 3γ2
1 + 6γ1γ̄2v̄(ā) + 3γ̄2

2v̄(ā)2 + 6γ̄2 + 6γ̄2ψ(ā)
)

/κc2, (34)

p̃(ā) =
(

–
1
ā2 –

4γ1
ā

– 3γ2
1 – 6γ1γ̄2v̄(ā) – 3γ̄2

2v̄(ā)2 – 6γ̄2 – 4γ̄2ψ(ā)
)

/κc2 (35)

+
2
κc2

· γ̄2(γ1 + γ̄2v̄(ā))ā
1 + (γ1 + γ̄2v̄(ā))ā

.
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Applying the traditional interpretation we can recognize four terms in formula (34), namely 3/κc2ā2,
6γ1/κc2ā, 3γ2

1/κc2 and 6γ̄2/κc2. We can link these terms with the following fluids: the string gas,
the γ1-domain walls, the γ1-vacuum and the γ2-vacuum, respectively. The remaining terms can
be interpreted with the help of the barotropic index w. The terms –6γ1γ̄2v̄(ā)/κc2 and 3γ̄2

2v̄(ā)2/κc2

can be linked with cosmological vacuums which will be called the γb
1,2-vacuum and the γb

2-vacuum,
respectively. The last undiscussed term we shall link with the γb

2-domain walls (see Example 3).
One can obtain some further properties of the fluids in question by considering the following

limits

ε̃f := lim
ā→∞

ε̃(ā) =
(

0 – 0 + 3γ2
1 + 6γ1γ̄2v̄f + 3γ̄2

2v̄2
f + 6γ̄2 – 6γ̄2

)
/κc2 (36)

= 3(γ1 + γ̄2v̄f )2/κc2,

p̃f := lim
ā→∞

p̃(ā) =
(

0 + 0 – 3γ2
1 – 6γ1γ̄2v̄f – 3γ̄2

2v̄2
f – 6γ̄2 + 4γ̄2 + 2γ̄2

)
/κc2 (37)

= –3(γ1 + γ̄2v̄f )2/κc2.

The underlined terms suggest that there is an interaction between the γ2-vacuum and the γb
2-domain

walls like in Example 3. The remaining terms in formulas (36) and (37) define nonzero ε̃f and p̃f

such that p̃f = –ε̃f . If we assume that Λ (see formula (14)) is zero then the final energy density of
all matter contained in the universe εf ≡ ε̃f > 0. It means that in this case the universe explodes to
infinity.

On the other hand, if we assume that Λ ̸= 0 (see Example 3) then we can define the cosmological
constant

Λth := ε̃f = 3(γ1 + γ̄2v̄f )2/c2. (38)

The discussed SE-model with the cosmological constant Λ = Λth will be called the ΛSE-model. For
the ΛSE-model formulas on the energy density ε and pressure p have the form

ε(ā) =
[

3
ā2 +

6γ1
ā

+ V(ā) + 6γ̄2 + 6γ̄2ψ(ā)
]

/κc2, (39)

p(ā) =
[

–
1
ā2 –

4γ1
ā

– V(ā) – 6γ̄2 – 4γ̄2ψ(ā) +
2γ̄2(γ1 + γ̄2v̄(ā))ā
1 + (γ1 + γ̄2v̄(ā))ā

]
/κc2, (40)

where
V(ā) := 3(γ1 + γ̄2v̄(ā))2 – 3(γ1 + γ̄2v̄f )2. (41)

The term V/κc2 is a w-vacuum term. The fluid associated with this term shall be called the
Vb-vacuum. It is a mixture of the γ1-vacuum, the γb

1,2-vacuum and γb
2-vacuum. Since V(ā) ≤ 0 for

ā ∈ [0,∞), the V(ā)/κc2 can be interpreted as a potential term in the energetic balance ε. Similarly
to the result in Example 3

lim
ā→∞

w(ā) = lim
v̄→v̄f

p(v̄)
ε(v̄)

= –2/3.

It means that the final evolution stage of the discussed model is dominated by the γb
2-domain walls.
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6. Observational Hobs(z) data and theΛSE-model
In this section we present an observational motivation for the choice of the γ-parameters from the
range γ1 < 0 and γ̄2 > 0. First of all let us notice that in our ΛSE-model the dependence H(z) can
be expressed in a parametric form dependent on v̄ because both the Hubble function H(t) and the
redshift z(t) := ā(t0)/ā(t) – 1 can be written as functions of v̄

H(v̄) := H(t)|t=t(̄v) =
√
γ̄2 coth(

√
γ̄2v̄), (42)

z(v̄) := z(t)|t=t(̄v) = ā(v̄0)/ā(v̄) – 1, (43)

where H(t) is given by formula (17) and ā(v̄) is a known function (10). The value of v̄ at the present
moment

v̄0 = arccoth(H0/
√
γ̄2)/

√
γ̄2 (44)

we can calculate with the help of the equality H0 = H(v̄0). The numerical value of H0 = 67.3km/(sMpc)
is taken from the results of the Planck Mission Planck Collaboration: Planck 2013 results. XVI. Cosmo-
logical parameters.

Thus, the parametric equations for H(z) can be written as

H(v̄) =
√
γ̄2 coth(

√
γ̄2v̄) z(v̄) = ā(v̄0)/ā(v̄) – 1, (45)

where v̄ ∈ [0, v̄f ) (see equation (12)).
Now, we can apply the χ2 procedure in order to find the values of γ1 and γ̄2 which best fit the

SE-model to the recently updated observational data Zhang, Ma, and Lan 2010; Ma Cong 2011; Yu
et al. 2011; Blake et al. 2012; Chuang and Wang 2013; Busca et al. 2013; Jimenez, Simon, and Verde
2005; Zhang et al. 2014; Moresco et al. 2012. As an outcome we obtain γ1 = –2.69921 × 10–18 s–1

and γ̄2 = 3.1211 × 10–36 s–2 at the level of χ2
min = 17.454 (see Figure 3). For comparison, we used the

result of the χ2 procedure for the ΛCDM-model with the same data. The fit for the ΛCDM-model
is represented by the dashed line while the prediction of the smoothly evolving model is represented
by the solid line. The value of χ2

min in this case is similar. Concretely, χ2
min = 18.119. The time

Figure 3. The best fit of the theoretical H(z) dependence to the observational data of Ia type supernovae for the discussed
SE-model.

variable t is a one-to-one and increasing function of v̄ (see (9)). Therefore, every moment of the
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discussed time evolution can be ascribed a unique value of the v̄ variable. The most interesting
moments of the time evolution seem to be the present moment t0 (or v̄0), the moment t∗ (or v̄∗) of
the commencement of the late acceleration and the final moment t → ∞ (or v̄f ).

Using the obtained best-fit values of γ1 and γ̄2 and with the help of formulas (12,38,44) and
the analysis of the ā(v̄) dependence, we can calculate v̄0 = 6.38094 × 1017 s, v̄f = 1.43795 × 1018 s,
v̄∗ = 3.73357 × 1017 s and Λth = 1.06803×10–52 m–2. These parameters enable us to obtain values
of the following important quantities characteristic for our model i.e. the age of the universe
t0 = 14.8063 × 109 y, the acceleration commencement moment t∗ = 8.96978 × 109 y, the redshift
z∗ = z(v̄∗) = 0.589055 and the value of the Hubble function at the acceleration commencement
moment H∗ = H(v̄∗) = 94.3085 × km s–1Mpc–1. The theoretically calculated quantities t0, t∗, z∗,
H∗ and Λ := Λth are thus in agreement with the observational results.

The fact that the value ofΛth agrees with the results of the Planck Mission favors ourΛSE-model.
For this model we can draw a graph of the wΛ(v̄) dependence (Figure 4). The Figure confirms results
of Example 4 and additionally demonstrates that in the deceleration-acceleration period pressure p of
matter in such universe was positive. In the next parts of the paper we will concentrate our discussion
on the ΛSE-model.

wΛ = -2 /3

wΛ = -1 /3

wΛ = 0
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Figure 4. The wΛ (̄v) dependence for the ΛSE-model best fit to the observational data.

7. Summary
The smoothness equation (3) is a result of a strictly geometrical discussion of the assumption that
orientation with respect to the cosmological time makes sense also on the manifold’s d-closures
for the flat FRW-models Gruszczak 2014. That assumption is a very restrictive condition. The
ΛSE-model constitutes the solution of the smoothness equation. It is a very intriguing fact that this
strictly geometrical considerations lead to the ΛSE-model which agrees with the observational data
(see Section 6).

Our model does not contain fluids usually considered as "ordinary matter". It contains the string
gas, two types of domain walls and vacuums: the γ1-vacuum, the γ2-vacuum, the γb

2-vacuum and
the γb

12-vacuum. The fluids are interacting fluids.
Let us trace the role of fluids discussed in Example 4 in the important moments of theΛSE-model

evolution.
In the first stages of the evolution (ā ≈ 0) the dominating forms of matter are the string gas and

the γ1-domain walls. The cause that our ΛSE-model decelerates expansion are the γ1-domain walls
(see Example 2). The remaining fluids have now a little influence on the rate of the expansion.

In the middle stages of the evolution (v̄ ≈ v̄∗ or t̂ ≈ t̂∗) the moderate influence of the γ1-domain
walls vanishes. Now the dominating role is played by all of the γ2-fluids and the γ1-vacuum. The
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fluids cause the change from deceleration to acceleration (Figures 2 and 4).
At the final stage of the ΛSE-universe evolution, its expansion accelerates to infinity (see Figure

2) and the dominating form of matter are the γb
2-domain walls (Examples 3 and 4). In the end the

γb
2-domain walls disappear due to expansion.

In our next papers we will discuss a SE-model which additionally contains dust and radiation.
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