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Abstract
We propose a generalization of the differential space concept that we call functorial differential space. It
consists in replacing the standard differential structure C∞(M) of a differential space by the differential
structure consisting of functions from an extended space M̄(A) to an algebra A, satisfying certain general
conditions, but not necessarily even commutative, and M̄(A) being a set of mappings C∞(M) → A,
interprtetd as new points. In this way, we obtain a whole family of theories of differential spaces (depending
on the algebra A). It is this family that is a functorial differential space. An important class of spaces arises
if we tensor multiply the differential structure of a functorial differential space by a Grassmann algebra.
This leads to the concept of a functorial differential superspace (or supermanifold). In this context we also
consider Einstein-Grassmann functorial super algebras.
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1. Introduction
In papers (Pysiak et al. 2020) and (Pysiak et al. 2023), we used a method, called by us the functorial
method, to study the infinitesimal structure of space-time and Einstein algebras. Broadly speaking,
it consists in replacing, in the theory of differential spaces, the differential structure, consisting of
smooth functions from a set M of points to the space of real numbers R, i.e. functions of C∞(M),
with a structure consisting of smooth functions from an extended space M̄(A) to an algebra A;
the latter is supposed to satisfy certain general conditions (smoothness condition could be relaxed);
M̄(A) is here a set of mappings C∞(M) → A interpreted as a set of new points. The formalism is
constructed in such a way that the algebra A plays the role of a stage from category theory, and
the whole becomes a functor from the category of algebras of a certain type to the category of sets.
Substituting various algebras for A, we obtain a family of theories of differential spaces. An important
class of spaces arises if we tensor multiply the differential structure of a functorial differential space
by a Grassmann algebra. This leads to the functorial superspace concept.

Regardless of its applications, the method of functorial differential spaces seems interesting in
itself. In this paper, we will make a more systematic review of this method, as it has been developed
so far, and refine some of its details.

J. A. Navarro Gonsàlaz and G. J. B. de Silas (Navarro Goncàlez and Sancho de Salas 2003), and
Jet Nestruev (Nestruev 2002) should be considered the precursors and at least partly the inspirers
of our approach to functorial spaces. In (Navarro Goncàlez and Sancho de Salas 2003), the authors
introduced the concept of parametric points as mappings from one differential space to another; in
(Nestruev 2002) the author considers the real spectrum of a certain geometric algebra A (that is, an
algebra that can be represented as an algebra of real functions on a certain space) as a set of maps
from A to R. We should also mention R. S. Palais (Palais 1981), A. Kock (Kock 2006, 2009), and I.
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Moerdijk and G. E. Reyes (Moerdijk and Reyes 2010) from whom we have borrowed and developed
some ideas and methods.

The plan of our work runs as follows:

• In Section 2, we define the main environment of our analyses, i.e., C∞-algebras.
• In Section 3, we consider a differential space (M, C∞(M)) and make a key move by defining a

space whose points are maps from from M to an algebra A, and a differential structure on this
space. The result of this procedure is a functorial ringed space whose geometric properties we
investigate.
• In Section 4, we deal with the issue of generating differential structures for functorial differential

spaces.
• In Section 5, we further develop the differential geometry for functorial spaces.
• In Section 6, we define functorial Einstein algebras.
• In Section 7, we construct sheaf version of functorial differential spaces.
• In Section 8, we show that if the differential structure of a functorial differential space is tensor mul-

tiplied by a Grassmann algebra, one obtains a functorial super differential space. Correspondingly,
one can also speak of Einstein-Grassmann superalgebras.

2. C∞-algebras
In this section, we recall the definition and some properties of the C∞-algebra, which sets the context
for our further constructions.

Definition 1 A unital commutative R-algebra A is a C∞-algebra if, for any n ∈ N, ω ∈ C∞(Rn) and
a1, . . . , an ∈ A, the element ω(a1, . . . , an) is defined and the following conditions are satisfied

1. for φ,ψ ∈ C∞(R2), a1 + a2 = φ(a1, a2), where φ(x1, x2) = x1 + x2.
a1 · a2 = ψ(a1, a2), where ψ(x1, x2) = x1 · x2.

2. for πi : Rn → R, n ∈ N, πi(x1, · · · , xn) = xi, i = 1, 2, · · · , n, a1, · · · , an ∈ A,

πi(a1, · · · , an) = ai,

3. for the function 1 ∈ C∞(Rn), 1(x1, · · · , xn) = 1, a1, · · · , an ∈ A,

1(a1, · · · , an) = 1A,

4. for θ ∈ C∞(Rm), ω1, . . . ,ωm ∈ C∞(Rm), a1, . . . , an ∈ A, m, n ∈ N,

(θ ◦ (ω1, . . . ,ωm))(a1, . . . , an) = θ(ω1(a1, . . . , an), . . . ,ωm(a1, . . . , an)).

Let A, B be C∞-algebras. A homomorphism f : A → B of R-algebras is said to be C∞-morphism
if

f (ω(a1, . . . , an)) = ω(f (a1), . . . , f (an)).

C∞- algebras as objects and C∞-morphisms as morphisms form a category, denotedby C∞.
Let us notice that C∞(M) is an C∞-algebra.

3. Ringed Space (M̄L(A), C∞(M̄L(A))
In this section, we make a key move for our subsequent considerations. If (M, C∞(M)) is a differential
manifold (or a differential space), and A some algebra, we define a space whose points are maps
from M to A, and a differential structure on this space (which turns out to be a C∞-algebra). It
turns out that this structure is isomorphic to the initial differential structure C∞(M). Thanks to this,
we can use it not only to build the standard geometry of M, but also by substituting various other
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algebras for A (treating them as stages in the appropriate category), we can construct completely
new geometries.

Let (M, C∞(M)) be an n-dimensional differential manifold (or a differential space), and A an
m-dimensional linear space such that R ⊂ A. By M̄L(A) := [C∞(M), A]L we will denote the set of
linear maps

ρ : C∞(M) → A.

M̄L(A) can be interpreted as a functor from the category of C∞-algebras to the category of linear
spaces.

For every smooth function f ∈ C∞(M) we define the function f̄ : M̄L(A) → A by

f̄ (ρ) = ρ(f )

for any ρ ∈ M̄L(A).
It is easy to see that the evaluation evp : C∞(M) → R, evp(f ) = f (p), for any p ∈ M, belongs

to M̄L(A). The set of all functions f̄ , for f ∈ C∞(M), will be denoted by C∞(M̄L(A)) = {f̄ : f ∈
C∞(M)}.

Lemma 1 The mapping J : C∞(M) → C∞(M̄L(A)) given by

J (f ) = f̄

is a bijection.

Proof. Suppose f̄ = ḡ for some f , g ∈ C∞(M). This implies that f̄ (evp) = ḡ(evp) for any p ∈ M.
Therefore, f (p) = g(p). And finally, f = g. 2.

Theorem 1 C∞(M̄L(A)) is a C∞-algebra with the operation of compositions with C∞-functions

ω(f̄1, . . . , f̄n) = ω(f1, . . . , fn)

for ω ∈ C∞(Rn), n ∈ N, f1, . . . , fn ∈ C∞(M).

Proof. We check conditions of the definition.

1. It is easy to see that the addition and multiplicaion are of the form

f̄1 + f̄2 = φ(f1, f2)

for φ : R2 → R, φ(x1, x2) = x1 + x2, and

f̄1 · f̄2 = ψ(f1, f2)

for ψ : R2 → R, ψ(x1, x2) = x1 · x2.
2. There is compatibility of C∞-algebraic operations with the projections: forπi : Rn → R, πi(x1, . . . , xn) =

xi, i = 1, . . . , n, x1, . . . , xn ∈ R, we have

πi(f̄1, . . . , f̄n) = πi(f1, . . . , fn) = f̄i,

f̄1, . . . , f̄n ∈ C∞(M̄L(A)).
3. For 1 ∈ C∞(Rn), f̄1, . . . , f̄n ∈ C∞(M̄L(A)) we have

1(f̄1, . . . , f̄n) = 1(f1, . . . , fn) = 1̄M · f̄ = 1M · f = f̄ .
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4. For θ ∈ C∞(Rn), ω1, . . . ,ωm ∈ C∞(Rm) we have

Θ ◦ (ω1, . . . ,ωm)(f̄1, . . . , f̄n) = θ(ω1(f̄1, . . . , f̄n), . . . ,ωm(f̄1, . . . , f̄n)). 2

Let us notice that addition as define above is a pointwise operation. Indeed,

(f̄1 + f̄2)(ρ) = (f1 + f2)(ρ) = ρ(f1 + f2) = ρ(f1) + ρ(f2) = f̄1(ρ) + f̄2(ρ)

for every ρ ∈ M̄L(A). However, multiplication as defined above is not a pointwise operation. Indeed,

(f̄1 · f̄2)(ρ) = (f1f2)(ρ) = ρ(f1f2).

If ρ is linear but not multiplicative, i.e. if (f1f2)(ρ) = ρ(f1)ρ(f2) does not hold, we cannot continue
transforming the right-hand side of the above equality. The multiplication operation is pointwise
only if ρ is multiplicative, i.e. when we change from the category of linear spaces to the category of
C∞-algebras. In such a case,

(f̄1 · f̄2)(ρ) = ρ(f1f2) = ρ(f1)ρ(f2) = f̄1(ρ) · f̄2(ρ).

In this way, we obtain the ringed space (M̄L(A), C∞(M̄L(A)) which can be considered as a
generalized differential space (in which case we will decorate M with the subscript L). If A is a
C∞-algebra, the linear mappings ρ : C∞(M) → A have the multiplicativity property (in which case
we will drop the subscript L). In this case, the corresponding differential space (M̄(A), C∞(M̄(A)) is
a differential subspace of (M̄L(A), C∞(M̄L(A)).

4. Generating Differential Structure of a Functorial Space
In this section, we deal with the issue of generating differential structures for functorial differential
spaces. The issue is not obvious because in the case of a functorial space its structure depends on an
algebra A. However, we will show that, despite this, the usual method of generating differential
structure is nicely transferred to functorial spaces.

Let us recall that the structure of a differential space (M, C) is generated by a subset C0 ⊂ RM

if C = (scC0)M , and on M we have the topology τC0 , the weakest topology on M in which the
functions from C0 are continuous. The following Lemma says how to transfer this definition to
functorial spaces.

Lemma 2 If C is generated by C0 then C̄(A) is generated by C̄0(A) = {f̄ A : f ∈ C0}.

Proof. We will show this Lemma locally, for any U ∈ τC0 , and for any A (τC0 is here the weakest
topology in which functions of C are continuous), We have

∀ρ∈Ū(A) ρ(f |U) = ρ(ω(g1, . . . , gn)|U ⇒ ∀ρ∈Ū(A) f̄ (ρ) = ω(ḡ1, . . . , ḡn)(ρ).

Therefore, f̄ |Ū(A) = ω(ḡ1, . . . , ḡn)|Ū(A). 2
We can see that if we have a ringed space (M̄, C̄) then C̄ is generated by C̄0 if

• scC̄0 = C̄,
• (C̄0)M = C̄ (in the sense of sheaf ).

Analogous results can be obtained when we allow for linear transformations, i.e. when we consider
a ringed space (M̄L(A), C̄L(A)) with M̄L(A) = [C, A]L and C̄L(A) = {f̄L : f ∈ C, f̄L(ρ) = ρ(f ) for
ρ ∈ M̄L(A)}.
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5. Functorial Geometry
In this section, we construct differential geometry for the space (M̄L(A), C∞(M̄L(A))). From Lemma
1 we know that the C∞-algebras C∞(M) and C∞(M̄L(A)) are isomorphic. Therefore, to every
derivation X ∈ Der(C∞(M)), there uniquely corresponds the derivation X̄ ∈ Der(C∞(M̄L(A)))
given by X̄f̄ = Xf for f ∈ C∞(M).

To every metric tensor g on M there uniquely corresponds the metric tensor ḡ : Der(C∞(M̄L(A)))×
Der(C∞(M̄L(A))) → C∞(M̄L(A)) given by ḡ(X̄, Ȳ) = g(X, Y) for X, Y ∈ Der(C∞(M)).

To every Levi-Civita connection ∇ of a metric tensor g on M there uniquely corresponds the
connection ∇̄ : Der(C∞(M̄L(A)))×Der(C∞(M̄L(A))) → Der(C∞(M̄L(A))) given by ∇̄X̄Ȳ = ∇XY
for X̄, Ȳ ∈ Der(C∞(M̄L(A))). It satisfies the following conditions

1. Z̄(ḡ(X̄, Ȳ)) = ḡ(∇̄Z̄X̄, Ȳ) + ḡ(X̄, ∇̄Z̄Ȳ),
2. [X̄, Ȳ] = ∇̄X̄ , Ȳ – ∇̄Ȳ , X̄

for all X̄, Ȳ, Z̄ ∈ Der(C∞(M̄L(A))).
To every curvature tensor R(X, Y)Z of connection ∇ there uniquely corresponds curvature tensor

R̄(X̄, Ȳ)Z̄ for connection ∇̄ such that R̄(X̄, Ȳ)Z̄ = R(X, Y)Z for any X̄, Ȳ, Z̄ ∈ Der(C∞(M̄L(A))).
The following relationships are satisfied

1. R̄(X̄, Ȳ)Z̄ = –R̄(Ȳ, X̄)Z̄,
2. ḡ(R̄(X̄, Ȳ)Z̄, U) = –ḡ(R̄(X̄, Ȳ)Ū , Z̄),
3. R̄(X̄, Ȳ)Z̄ + R̄(Ȳ, Z̄)X̄ + R̄(Z̄, X̄)Ȳ = 0,
4. ḡ(R̄(X̄, Ȳ)Z̄, W̄) = ḡ(R̄(Z̄, W̄)X̄, Ȳ).

In the local basis ∂̄
∂xi , i = 1, . . . , n, the curvature tensor R̄ has the form

R̄(
∂̄

∂xi ,
∂̄

∂xj )
∂̄

∂xk =
n∑

l–1

R̄l
ijk
∂̄

∂xl .

The trace of a tensor B̄ of type (1, 1)

B̄ : Der(C∞(M̄L(A))) → Der(C∞(M̄L(A)))

has locally the form
trB̄ = tr(B̄j

i)

where B̄( ∂̄
∂xi ) =

∑n
j=1 B̄j

i
∂̄
∂xj . Obviously, one has trB̄ = trB.

Let us consider two tensors R(X, Y), X, Y ∈ Der(C∞(M) and a tensor R̄(X̄, Ȳ), X̄, Ȳ ∈
Der(C∞(M̄L(A)) remaining in one-to-one correspondence. One has R̄X̄,Ȳ = RX,Y .

As well known, Ricci tensor satisfies the following relation Ric(X, Y) = trRX,Y and correspond-
ingly Ric(X̄, Ȳ) = trR̄(X̄, Ȳ) = trRX,Y .

We know that there exists an operator R : Der(C∞(M)) → Der(C∞(M)) such that Ric(X, Y) =
g(RX, Y) where g is a Lorentz metric on Der(C∞(M)). Correspondingly, we have an operator
R̄ : Der(C∞(M̄L(A)) → Der(C∞(M̄L(A)) such that Ric(X̄, Ȳ) = ḡ(R̄X̄, Ȳ) = g(RX, Y) where ḡ is a
Lorentz metric on Der(C∞(M̄L(A)). Then the scalar (or Ricci) curvature is defined as r̄ = trR̄.

To have a clear picture of the above, let us notice that our starting manifold (or a differential
space) (M, C∞(M)) is embedded into (M̄L(A), C∞(M̄L(A)). Indeed,

(M, C∞(M)) ∼= ((M̄ev(A), C∞(M̄ev(A))) ⊂ (M̄L(A), C∞(M̄L(A))).
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The space M̄L(A) contains M̄ev(A) as a space of linear functionals ρ : C∞(M) → A. In particular,
evaluations evp : C∞(M) → R ⊂ A can be interpreted as original points of the functional space
M̄L(A).

As we can see, we already have all the quantities necessary to formulate the functorial Einstein
algebra.

6. Functorial Einstein Algebra
The idea of Einstein algebra comes from Geroch (Geroch 1972); it was later developed in (Heller
1992) and (Heller and Sasin 1995). In (Heller et al. 2024), we defined the Lorentz module on a
differential manifold (or a differential space) (M, g) as a triple (Der(C∞(M)), C∞(M), g), where
DerC∞(M) is a C∞(M)-module of derivations of the algebra C∞(M), and the Einstein algebra on
(M, g) as a Lorentz module on (M, g) on which the Einstein equations are defined (although there
the definition was given a slightly different wording). The functorial version of this definition has
the following form

Definition 2 • Functorial Lorentz module on a functorial Lorentz manifold (M̄L(A), ḡ) is a triple
(Der(C∞(M̄L(A))), C∞(M̄L(A)), ḡ), where Der(C∞(M)) is a C∞(M)-module of derivations of the
algebra C∞(M̄L(A)).
• Einstein algebra on a functorial Lorentz manifold (M̄L(A), ḡ) is a functorial Lorentz module

(Der(C∞(M̄L(A))), C∞(M̄L(A)), ḡ) on which functorial Einstein equations are defined. They are of the
form

(i) Ric = Λḡ,

(ii) Ein +Λḡ = 8πT̄

where Ein = Ric – 1
2 r̄ḡ is called the Enstein tensor, Λ is the cosmological constant, and T̄ is a suitable

energy-momentum tensor.

Sometimes, unless there is danger of confusion, only the expression C∞(M̄(A)) will be called
Einstein algebra. The above functorial (generalized) Einstein equations select from the C∞(M̄L(A))-
module of derivations Der(C∞((M̄L(A)))) a submodule of derivations satisfying these equations.
The Lorentz metric ḡ is defined on this submodule. In ordinary general relativity, the dependence
on the derivation submodule remains invisible because the full derivation module is assumed to be
considered from the very beginning. In this case, Einstein’s equations determine only the Lorentz
metric.

Let us notice that if A = R, we have ρ = evp : C∞(M) → R given by evp(f ) = f (p) and the
functorial differential space becomes the usual differential space (M, C∞(M)). The fact that assuming
A different from R may be interesting is demonstrated by an example: The assumption that A is a
Grassmann algebra leads to the theory of supermanifolds (see Section 8).

7. Functorial Structured Spaces
According to the method adopted in the previous chapters of these notes, after developing the
differential version of the theory of given spaces, one should move to its structured version. In the
case of functorial spaces, this transition is natural. The structured counterpart of functorial spaces is
the sheaf of differential structures of functorial spaces over the topological space (M, topM).

We construct such a sheaf in the following way.

1. With every open subset U ∈ topM we associate a functorial space (ŪL, C∞(ŪL)).
2. For any two open subsets U , V ∈ topM such that U ⊂ V , the restriction operator is defined
ρV

U : C∞(V̄L) → C∞(ŪL) by ρV
U (f̄L) = f |U , f̄L ∈ C∞(V̄) for f ∈ C∞(M).
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Definition 3 The functorial structured space over a topological space (M, topM) is a pair (M,OL
M (A))

where OL
M (A) is a sheaf over (M, topM) such that for every U ∈ topM one has OL

M (A)(U) = C∞(ŪL(A)).

Obviously, if A is a C∞-algebra, the points ρ enjoy the multiplicativity property and the subscript L
can be omitted everywhere.

8. Example: Functorial Approach to Supermanifolds
In this section, we show that if the differential structure of a functorial manifold (differential space) is
tensor multiplied by a Grassmann algebra, one obtains a functorial supermanifold (functorial super
differential space). A Grassmann algebra is an associative R-algebra Λn with unity, such that there
exists a set of generators in it 1,β1, . . . ,βn, n ∈ N, such that

1Λnβi = βi = βi1Λn

and
βiβk + βkβi = 0.

Every element α ∈ Λn can be written as

α =
∑
k≥0

∑
i1,...,ik

αi1,...,ikβi1 . . .βik ,

Indices i1, . . . , ik are supposed to satisfy one of the following conditions: either αi1,...,ik should
be antisymmetric with respect to their indices, or the indices should form the increasing sequence
i1 < i2 < . . . < ik. Obviously, βi are nilpotents (β2

i = 0). The above definition of Grassmann algebra
can be rephrased in such a way as to allow an infinite number of generators, but we will not deal
here with this case.

A unique algebra homomorphism b : Λn → R which maps 1 onto 1 and all the generators to
zero is called the body map and its image the body of Λn. The linear map s which maps Λn onto its
nilpotent elements is called the soul map and its image the soul of Λn.

Any Grassmann algebra admits a gradation Λn = 0Λn ⊕ 1Λn where 0Λn and 1Λn are spanned
by the products of even and odd numbers of generators, respectively. The subspace 0Λn is also a
subalgebra of Λn. (For more on Grassmann algebras see (Berezin 1983; Berezin and Leites 1975;
DeWitt 1984; Rogers 2007).)

There are at least several (not all equivalent) definitions of a supermanifold: for instance, Berezin-
Leites original definition (Berezin 1983; Berezin and Leites 1975), Kostant’s definition (Kostant
1977), DeWitt’s definition in terms of maps and atlases (DeWitt 1984). In what follows, we will refer
to Berezin’s definition (as it was formulated by Rogers (Rogers 2007, p. 86) for its simplicity. The
definition runs as follows.

Definition 4 A smooth real (algebro-geometric) supermanifold of dimension (m, n) is a pair (M,A) where
M is a real m-dimensional manifold and A a sheaf of supercommutative algebras over M satisfying the
following conditions

1. there exists an open cover {Ui|Ui ∈ topM, i ∈ I} of M such that for each i ∈ I

A(Ui) ∼= C∞(Ui) ⊗Λn,

where Λn is a Grassmann algebra with n generators,
2. if N is the sheaf of nilpotents in A, then

(M,A/N ) ∼= (M, C∞
M )

where C∞
M is a sheaf of smooth functions on M.
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We will call a supermanifold defined in this way the Berezin supermanifold. Let us notice that an
(m, 0)-dimensional supermanifold is an m-dimensional Berezin manifold.

Let us now consider a functorial differential space with the differential structure tensorially multi-
plied by a Grassmann algebra, i.e. (M̄(A), C∞(M̄(A) ⊗Λn)), which we change, in the standard way,
into the sheaf space (M̄(A),AM̄ ) with AM̄ (Ūi) ∼= C∞(Ūi) ⊗Λn. We will consider this construction
in the Lin or C∞ categories, as appropriate.

Let us first notice that multiplication by a tensor does not spoil the smoothness. The mapping

F̄ : (M̄(A), C∞(M̄(A))) → (N̄(A), C∞(N̄(A))),

given by F̄(ρ) = ρ ◦ F∗, ρ ∈ M̄(A), is smooth, if for every β ∈ C∞(N), one has β̄ ◦ F̄ ∈ C∞(M̄(A)).
It can be easily checked that in our case

F̄ : (M̄(A), C∞(M̄(A)) ⊗Λn) → (N̄(A), C∞(N̄(A)) ⊗Λn),

this is satisfied. Indeed,
(β̄⊗ λ) ◦ F̄ = β ◦ F ⊗Λn,

λ ∈ A.
The tensor multiplication of the differential structure C∞(M̄L(A)) by A has one more conse-

quence: it breaks the isomorphism between the C∞(M) and C∞(M̄L(A)) structures, thus enriching
the geometry of the latter.

Now, let us consider a smooth supermanifold of dimension (m, n) as a pair (M,A) where M is a
real m-dimensional manifold and A a sheaf of supercommutative algebras as in Definition 4. On the
strength of the isomorphism

J : C∞(Ū(A)) ⊗Λn → C∞(U) ⊗Λn

given by
J (f̄ ⊗ λ) = f ⊗ λ,

λ ∈ A, we can associate (uniquely) with each Berezin supermanifold (M,A), where, for each i ∈ I,
A(Ui) ∼= C∞(Ui)⊗Λn, the functorial space (M̄(A), Ā), where, for each i ∈ I, Ā(Ūi) ∼= C∞(Ūi)⊗Λn
(the second condition of Definition 4 is met automatically). The latter space can also be called
(functorial) Berezin supermanifold or extended Berezin supermanifold. (Of course, for A we can
also substitute Λn.)

The concept of Einstein-Grassmann algebra from the end of Section 7 is automatically transferred
to the current situation. We will call the sheaf Ā the Einstein-Grassmann sheaf if, for every Ūi,
ĀŪi

∼= C∞(Ūi) ⊗Λn, the algebra C∞(Ūi) is an Einstein algebra. A supermanifold with an Einstein-
Grassmann algebra as its differential structure will be called Einstein-Grassmann supermanifold.

In (Heller et al. 2024), we investigated a number of properties of functorial supermanifolds.
In particular, curves in supermanifolds (super curves) exhibit rich properties which curves in an
ordinary manifold are lacking. This may have important implications for the theory of singularities
in superspace.
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