APPLICATION OF PREDICTIVE METHODS TO FINANCIAL DATA SETS

Authors

Keywords:

Predictive methods, Data mining, Machine learning, Meta-heuristic technique, Numerical computation, Operation research

Abstract

Financial data sets are growing too fast and need to be analyzed. Data science has many different techniques to store and summarize, mining, running simulations and finally analyzing them. Among data science methods, predictive methods play a critical role in analyzing financial data sets. In the current paper, applications of 22 methods classified in four categories namely data mining and machine learning, numerical analysis, operation research techniques and meta-heuristic techniques, in financial data sets are studied. To this end, first, literature reviews on these methods are given. For each method, a data analysis case (as an illustrative example) is presented and the problem is analyzed with the mentioned method. An actual case is given to apply those methods to solve the problem and to choose a better one. Finally, a conclusion section is proposed.

Downloads

Published

2024-01-06