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Abstract 

Contemporary financial risk management is significantly based on the analysis of time series of returns.  

One of the most significant errors frequently committed by analysts is the predominant use of normal 

distributions when it is clear that the returns are not normal. Copula models and models for non-normal 

multivariate distributions provide new tools to solve the problem because the obtained results are immediately 

applicable in portfolio management, option pricing and measuring risk without assuming normality. Therefore, 

both a theoretician and a practitioner are interested in multivariate models for returns and copula functions. The 

copula function models provide an effective and interesting technique of constructing multivariate distribution 

starting from marginal ones. Due to Sklar's result established in 1959, we can present any multivariate 

distribution with a help of corresponding marginal distributions and a selected copula function. In this work we 

present an application of copula function to construct multivariate conditional distributions of times series. In 

the last part of this paper dynamic models such as DCC-MVGARCH and conditional copula are analyzed. 

Moreover, we also present an application of bootstrap in the context of copula function. This  work is appended 

by examples showing practical application of our work. 
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Introduction 
Copula functions have recently become a very popular tool in financial modeling and risk 

management as they liberate the analyst from the pitfalls of using the normal distribution in 

situations where it is evident that returns are not normal. Copula functions are essential as 

they allow to construct the multivariate model from the marginal distributions and a specific 

function, called a copula function. The standard approach to portfolio risk management is 

based on the assumption of multivariate normality since the multivariate normal distribution 

allows to model the behavior of portfolio via an analysis of individual positions and a 

covariance function. In some sense, therefore, the copula function approach is a natural 

generalization of multivariate normal theory. Within this approach we can model the 

individual positions using a variety of distributions and use the copula function to replace the 

covariance. This gives far more flexibility to copula functions and allows better modeling of 

dependences among individual positions of a portfolio. This immediately leads to better 

modeling of various risks related to portfolio, like liquidity loss and Value-at-Risk (Cherubini, 

Luciano and Vecchiato, 2003).  
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To make the technically complex copula theory more comprehensible to the readers, in our 

paper we will analyze in detail a two-position portfolio containing stock indexes 

corresponding to 2-dimention copula. We show that our method is significantly better than 

traditional ones since it is not using normality assumption. We also show how to apply the 

DCC (dynamic conditional correlation) model and the dynamic conditional copula. Our 

model is shown to work for a portfolio containing WIG and DAX stock indexes. 

 

General description of copulas 
Sklar (1959) has developed the theory of copula functions by formulating a result, where it is 

possible to represent any multivariate distribution function with the help of its marginal 

distributions and an appropriately selected copula function. For continuous multivariate 

distribution functions the choice of copula is unique. To illuminate this fact, let us consider a 

2-dimention distribution function 
1 2( , )H x x and let 

1 1( )F x  and 
2 2( )F x be marginal 

distributions corresponding to H . Then, we can select such a copula function C  that 

1 2, ,x x R  

1 2 1 1 2 2( , ) ( ( ), ( )).H x x F x F xC
                                             (1) 

Conversely, if C  is a 2-dimensional copula function and 
1 2,F F  are univariate distributions 

then we can find a bivariate distribution function H  such that 
1 2,F F  are marginals of H . 

For the definition of the copula function the reader is referred to the monograph by Nelsen 

(1999). Below, we give examples of multivariate distributions and corresponding copulas. 

 

Example 1. Normal marginals 
1 2,F F  with non-normal bivariate distribution function H . Let 

1 2,F F  be normal distribution functions and consider the following copula function 
1

(1 ) (1 )
2( , ) 1 (1 )(1 )

ln u ln v

C u v u v u v e .                             (2) 

Using Sklar's theorem we can construct joint distribution function with the following form 

1 2

1
(1 ( )) (1 ( ))

2
1 2 1 2( , ) ( ) ( ) 1 (1 ( ))(1 ( ))

ln F x ln F y

H x y F x F y F x F y e .                    (3) 

 

Example 2. Student copula 

Student copula, similar to normal copula, is constructed by an inversion method (Nelsen, 

1999). Its formula is the following: 
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where  is a parameter of copula,  is the number of degrees of freedom and  is the 

Gamma function. 

 

Financial time series models 
Precise modeling of marginal distribution is a very important step while using copula 

functions in modeling behavior of the portfolio. Multivariate distributions are the best tools to 
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model the portfolio and there is a need to extend the classical multivariate normal approach. 

While analyzing the empirical time series corresponding to returns e.g. for stock market 

indexes, we frequently encounter such phenomena as volatility clustering, that is the 

variability in time of the conditional variance. We also observe another phenomenon called 

fat tails phenomenon when the spread of returns is significantly larger than that corresponding 

to the normal distribution (see (Mandelbrot, 1963) or Fama (1965)). We also see the so-called 

financial leverage effect which emphasizes the asymmetric influence of positive and negative 

information on the whole variance of time series (Tsay, 2002). 

It is important to emphasize once more that many financial time series of returns CANNOT 

be assumed to be normal. To illustrate that, we will use a popular tool called a q-q plot. Such 

a plot compares the quantiles of the normal distribution with the empirical quantiles 

corresponding to the analyzed returns. If returns are normal, then the picture should be 

showing a diagonal line. The picture below is done for the daily returns of the Warsaw Stock 

Index WIG20 in the period between January 2004 and February 2008. 

 

Figure 1: Comparison of empirical quantiles and normal distribution quantiles for the 

returns of Warsaw Stock Index WIG20 

 
 

The picture above shows that the normal distribution is a very bad model for the data. One 

should rather choose a distribution with fat tails, for example a t-student distribution. Very 

frequently, the models ARMA-GARCH with fat-tailed innovations are used to model such 

data (Tsay, 2002). 

The key to appropriate and precise modeling of returns from portfolio, stock indexes and 

stock prices is the volatility modeling. The most popular traditional way to accomplish such 

task is using the sample variance as a measure of volatility. Again, such measure of volatility 

is appropriate when the data at hand are normal, which, as shown above, is far from being true 

e.g. for WIG20. The more precise approach uses the GARCH-type models, created by Engle 

(Engle, 1982). The advantage of the model is its ability to deal with time-variant conditional 

heteroskedasticity when the general model for the data has the unconditional time invariant 

variance. Let us have a closer look at GARCH(p,q) model.  

The time series { }t t Z
 is said to follow the GARCH(p,q) model when 
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,ttt h  where  
q

i

p

j

jtjitit hh
1 1

2

0 .                                     (5) 

               

In the formula (5) the symbol 
t
 denotes the innovations. 

The model is well defined when the parameters p and q are positive integers and α0>0,  

αi >=0, i =1,2,…,p, βj >=0, j=1,2,…,q.It is important that in the GARCH(p.q) model the 

conditional variance described by the function ht (5) depends on previous conditional 

variances calculated in times t-1,…,t-q and from previous values of time series. Model 

GARCH(p,q) is very important while describing the volatility clustering for residuals { }te  

calculated for the ARMA model (Brockwell and Davis, 2002). 

The effect of financial leverage is understood as asymmetric influence of good and bad news 

on the future variance of time series. Of course, good news corresponds to positive returns 

(profits) and bad news corresponds to negative returns (losses). In the case of stocks, the fall 

of prices increases the financial leverage and increases the level of risk. Such factors 

contribute to the increase in volatility, therefore while modeling returns it is very important to 

take that into consideration. In the literature, there are several ways to handle the above 

asymmetric influence phenomenon. The most popular is for example GJR-GARCH model 

presented in Glosten, Jagannathan and Runkleet (1993). 

The model GJR-GARCH(p,q) is defined in the following way: the time series { }t t Z
 follows 

the GJRGARCH(p,q) model when 

,t t th               (6) 

where   2 2

0 { 0}

1 1 1

,
t i

q p q

t i t i j t j i t i

i j i

h h I  

and { }t  are arbitrary innovations with mean zero and variance 1. In the model (6) the 

function [ , ]a bI  denotes the indicator function of the interval [a, b] that is [ , ]( ) 1a b xI while 

[ , ]x a b  and [ , ]( ) 0a b xI while [ , ]x a b . Moreover, the parameters fulfill the conditions: 

0 10, 0, 1,.., , 0, 1,.., , 0, 1,.., .i ii q j p i q  

A good look at the model (6) entitles us to identify the parameter 
i
 with the market 

asymmetry. When 
i
 is bigger than zero then the negative returns (losses) have a stronger 

influence on volatility than the positive returns (gains). Therefore, parameters 
i
 identify the 

sensitivity of volatility function ht with respect to negative returns. 

Another way to parameterize the lack of symmetry of the market reaction with respect to 

negative and positive returns is the Asymmetric Power ARCH model introduced by  

Z. Ding, C. Granger, R. Engle (1993). We give the description of the model below. 

The time series { }t t Z
is called APARCH(p,q), if for every t the following equation holds: 

,t t t
        (7) 

where  0

1 1

( .\| n| )
q p

t i t i i t i j t j

i j

        (8) 

In the equation (7) the symbol { }t corresponds to innovations with mean zero and variance 

one. In order to make the APARCH model well defined the following conditions are needed: 



                                   

 
Financial Internet Quarterly „e-Finanse” 2011, vol. 7, nr 2 

www.e-finanse.com 
University of Information Technology and Management 

Sucharskiego 2 
35-225 Rzeszów 

ISSUE CO-FINANCED BY THE MINISTRY OF SCIENCE AND HIGHER EDUCATION 

5 

0 10, 0, 1,.., , 0, 1,.., , 1 1, 1,..,i ii q j p i q . The models like APARCH 

encompass the ARCH, GARCH, GJR-GARCH models as well as other models used in 

financial research (Wurtz, Chalabi and Luksan, 2002). 

 

Copula functions in financial modeling 
In the classical setup of analysis of returns of portfolio, the multivariate normality of returns is 

assumed. As we have seen in previous considerations, the assumption of normality is 

unrealistic. The contemporary approach to portfolio modeling is strongly based on copula 

functions (Haerdle, 2010). In the sequel to this section, to simplify, we will restrict ourselves 

to two-dimensional copula functions. Multidimensional generalization of two-dimensional 

case is an easy generalization and can be found e.g. in Haerdle (2010). 

To start fitting the copula functions to time series data described via previously mentioned 

models (GJR, APARCH and the like) we need to clearly state, that our method of fitting 

should be applied to conditional copula functions, that is functions that allow to capture the 

time- dependence of the phenomenon. Then, to fit the copula function we will be using the 

IFM method of estimating the copula (Cherubini et al, 2003). The details of the method can 

be represented in the following algorithm: 

STEP 1. For each of the positions in the portfolio we identify the appropriate model 

(e.g. GARCH, GJR etc), estimate the volatility function { }th of the model and identify 

the conditional distribution of the { }i . Taking, for example, a two-position portfolio, 

we will have two time series 
T{ }t tx  and 

T{ }t ty  for which two separate fitting 

procedures will be made. Each marginal fit identifies the parameters of marginal 

distribution with the help of AIC criterion. For details, see Mokrzycka (2008). 

STEP 2. Using Step 1, for each time moment {1, , }t T we create independent, 

uniformly distributed on (0,1) random variables
T{ }t tu and 

T{ }t tv  that are 

transformations of the original data 
T{ }t tx  and 

T{ }t ty  via marginal distributions. For 

details see Cherubini et al (2003). 

STEP 3. We are now using the time series 
T{ }t tu  and 

T{ }t tv  obtained in Step 2 to 

estimate the parameters of the copula function. 

The estimation process described in Step 1 requires a very high precision since it defines the 

conditional distribution. Moreover, in Step 1, it is quite crucial to appropriately select the 

copula function. Such general problems are within the scope of ongoing research of the 

authors. To illuminate the method above, we will present below an example of fitting the 

bivariate copula corresponding to two stock market indexes: WIG20 and DAX. We have used 

the open source software R and also algorithms available on the web page of Professor  

A. Patton (see http://www.nuffield.ox.ac.uk/users/nielsen/mphileconometrics/index2008.htm). 

 

Example 3. (Estimating copula for WIG20 and DAX, 2004-2008) 

We are analyzing here the daily returns for bivariate portfolio based on two indexes: WIG20 

and DAX observed daily from January 2, 2004 to February 27, 2008. For DAX index, the 

data set is larger since there are more holidays in Poland than in Germany. Therefore, for the 

subsequent analysis only working days in both countries are analyzed. We start with 

estimating the parameters of the marginal distribution for each of the indexes as specified in 

Step 1. For WIG 20 we have identified GARCH(1,1) model with the innovations coming 
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from the skewed t-distribution. On the other hand, for DAX we have identified APARCH(1,1) 

with 2 also with skewed t-student distribution. Below, we present the results of the 

estimation. First, we present the results of Step 1 for DAX WIG20 data. 

 

Table 1: Estimated coefficients of GARCH(1,1) model for WIG20 

Parameters Estimate Std. Error t value Pr(> |t|) 

α0 1.827e-06 1.391e-06 1.314 0.188973 

α1 4.076e-02 1.331e-02 3.061 0.002203 ** 

β1 9.505e-01 1.787e-02 53.174 < 2e-16 *** 

LLF 3031.989 

AIC -5.853544 

 

Table 2: Estimated parameters of APARCH(1,1) with 2 for DAX 

Parameters Estimate Std. Error t value Pr(> |t|) 

α0 4.635e-06 1.515e-06 3.059 0.00222 ** 

α1 3.889e-02 1.672e-02 2.326 0.02004 * 

γ1 0.99 3.720e-01 2.688 0.00719 ** 

β1 8.703e-01 2.736e-02 31.812 <2e-16 *** 

LLF 3400.805 

AIC -6.566098 

 

For the DAX index data, the best model - APARCH(1,1) with the parameter 2 has 

resulted in selecting skewed t-student distribution. Moreover, the parameter γ1 was close to 

one which indicated a strong asymmetry effect. In the above tables, the AIC corresponds to 

Akaike information criterion while identifying either GARCH or APARCH models. The 

values obtained are the smallest from all considered models. On the other hand, the acronym 

LLF corresponds to the log likelihood function. The models selected have maximized the LLF 

value among all considered models. 

Now, to show the results of Step 2, we check whether the identification done in Step 1 was 

performed correctly, that is whether the time series 
T{ }t tu and 

T{ }t tv  are indeed independent 

in time and uniformly distributed on (0,1). 

 

Table 3: Results of tests 

Transformed returns p-value LM Test p-value K-S Test 

WIG20 0.8982 0.5611 

DAX 0.1185 0.3428 

 

For both WIG and DAX we have tested the independence using the LM test (Pesaran, Ullah 

and Yamagata, 2008) while the classical Kolmogorov-Smirnov test (K-S Test) was used to 

check the consistency with the uniform distribution. In both cases, p values are bigger than 

5% therefore there is no evidence of lack of fit of models used in Step 1. Now we pass to the 

third Step in our algorithm, that is to identify the copula functions using 
T{ }t tu and 

T{ }t tv . 
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Table 4: Values of LLF and AIC for estimated copula 

Copula LLF AIC 

Normal 120.765 -0.2346 

Sym. Joe-Clayton 127.7099 -0.2499 

Gumbel 102.3056 -0.1990 

t-student 128.6105 -0.2517 

 

The biggest value of log likelihood function LLF and the smallest value of Akaike 

information criterion AIC is obtained for t-student copula. The estimated number of degrees 

of freedom for this copula is equal to 8.1969 and estimated correlation coefficient is 0.4583. 

For details of the parameters of such copula see formula (4). 

While summarizing this example, we would like to emphasize that for our simple two-

position (bivariate) portfolio we have obtained significantly different models for each 

marginal position. Returns in both cases are highly non-normal and with fat tails. 

 

Figure 2: Comparison of empirical quantiles and normal distribution quantiles for the 

returns of Warsaw Stock Index WIG20 (on the left side) and for the standarized 

residuals form GARCH model(on the right side) 

 
 

Moreover, the copula function is of t-student type, so clearly this portfolio CANNOT be 

modeled with the multivariate normal distribution. We have clearly shown that copula 

function approach is far better than the multivariate normal approach. Using our advantageous 

modeling, we can approximate a very popular risk measure for portfolio, such as Value-at-

Risk (VaR). A more formal approach to this problem will be presented in the subsequent 

research of the Authors, here we will show only graphical illustration copula-based approach. 

The portfolio selected is based in 50% on WIG20 and in other 50% on DAX in the analyzed 

period. 

 

 

 

 

 

 



                                   

 
Financial Internet Quarterly „e-Finanse” 2011, vol. 7, nr 2 

www.e-finanse.com 
University of Information Technology and Management 

Sucharskiego 2 
35-225 Rzeszów 

ISSUE CO-FINANCED BY THE MINISTRY OF SCIENCE AND HIGHER EDUCATION 

8 

Figure 3: Return of portfolio and 95% VaR (green line)  

 
The picture above shows the ability of our models to capture the behavior of Value-at-Risk 

even for clusters of highly volatile observations which, on Figure 3,  occur at the end of the 

observation interval. 

 

Dynamic models 
In the previous section we have shown the advantages of using copula-based model for 

describing the behavior of portfolio composed of positions generating non-normal returns. 

The approach previously presented was based on the assumption that the dependence among 

the positions can be modeled with the one copula function that is not changing in time. In 

reality, however, we have dynamic changes between market positions – for example 

correlations can be time-dependent. To have a clearer insight into that phenomenon, let us 

consider DCC-MVGARCH (dynamical conditional correlation - MVGARCH) model and a 

dynamical conditional copula model. See Engle et Shephard (2001) for the former model and 

Patton (2001) for the latter. 

Suppose that we have a k-dimensional vector rt of returns in time moments t = 1,…,T. We can 

represent this vector via the vector autoregression (VAR) model as: 

 

A(L)rt =εt , where εt|Ft-1~Nk(0,Ht),       (9) 

 

A(L) corresponds to the matrix of the lag operator L (Lr1,t = r1;t-1), εt corresponds to the errors 

in model VAR with the covariance matrix { } , , 1,2,...,t ij tH h i j k corresponding to the 

conditional distribution Nk(0;Ht). Using the approach of Engle and Sheppard (2001) we can 

have the following representation: 

Ht =DtRtDt, 

where Dt is the k x k diagonal matrix containing the standard deviations of the univariate 

conditional distributions of the corresponding GARCH models and also Rt is a time-variant 

correlation matrix. Such representation of the covariance matrix significantly simplifies the 
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process of estimating parameters. The estimation procedure is done using the maximum 

likelihood method. 

 

Example 4. Estimating DCC-MVGARCH model for the DAX and WIG20 time series 

We are analyzing the WIG20 and DAX data previously considered. We are using the DCC-

MVGARCH model directly to the returns. We start with the test of constancy of correlation 

described in Engle (2001). According to this test, we have rejected the model with the fixed 

correlation in favor of the model with the time-variant correlation with lag 4. For the 

consecutive lags (from order 1 to order 4) the p-values were equal to pvalue1= 0.9208, 

pvalue2=0.9504, pvalue3=0.2994, pvalue4=0.0047. For the sake of comparison, the fixed 

estimated value of the correlation coefficient was equal to 0.4985. We have the following 

figure to substantiate our time-varying correlation model: 

 

Figure 4: Estimated correlation in DCC(1,1) model 

  
 

The value of the log likelihood function with the time varying correlation is equal to LLF = 

6496.8. It estimates a multivariate GARCH model using Bollerslev's constant correlation 

estimator LLF = 6489.6 (see Bollerslev (1986)).  Let us now compare the dynamics of the 

time varying correlation in our DCC-MVGARCH model and the dynamics of returns. The 

picture above represents rescaled indexes, that is the rescaled time series T{ }R

t tx  and T{ }R

t ty , 

where 
1

R t
t

x
x

x
 and 

1

R t
t

y
y

y
, where xt denotes the WIG index. 
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Figure 5: Rescaled indexes and time varying correlation 

 
 

Observation of the joint dynamics of the time varying correlation and the relative movement 

of T{ }R

t tx  and T{ }R

t ty leads to several conclusions. First, the simultaneous drops of indexes 

on both markets (around the time point 1000) generate a high value of the correlation. When 

there is a growing tendency on both markets, the correlation is not very high. The falling 

tendency generates higher values of correlation. This is another example of the lack of 

symmetry in simultaneous movements of the markets. Again, bad news is spreading more 

rapidly... 

 

Dynamic conditional copula model 

The previous example showing lack of symmetry in dependence between two market indexes 

motivates us to seek better models of asymmetric movements of the markets. We will start 

our search for better models by considering a normal copula with the time dependent 

correlation coefficient with some specific form of time dependence. Then we will move to a 

different concept of correlation - that is to tail dependence index and the Joy-Clayton copula. 

Let us consider first the normal copula. It has the following form 
1 1 2 2
( ) ( )

22

1 ( 2 )
( , ) { } , 1 1.

2(1 )2 1

u v r rs s
u v exp drdsC   (10) 

The research of Patton (2006) provides a following representation for the time-dependent 

correlation: 
10

1

11

1 )()(
10

1
(

j

jtjttt u  
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where 
x

x

e

e
x

1

1
)(   is the logistic transformation to keep the correlation coefficient in the 

interval (-1,1).We will now run the estimation procedure using the above model for our two 

index portfolio. 

 

Example 5. Dynamic normal copula model 

The data, as before, concern the mutual dynamics of WIG20 and DAX model. The fit 

provides a dynamic correlation coefficient very similar to previously obtained dynamic 

coefficient in the model DCC-MVGARCH. 

 

Figure 6: Estimated dynamic correlation in the dynamic copula model 

 
 

The value of the log-likelihood function in this case is equal to 128.2976 and is bigger than in 

all the previously obtained models that have used a copula approach. 

We will now pass to the Joy-Clayton copula model, where the copula function is defined as: 
1/ 1/( , | , ) 1 (1 {[1 (1 ) ] [1 (1 ) ] 1} ) ,JC U Lu v u vC   (11) 

where 21/ (1 )Ulog , 21/ ( )Llog , (0,1), (0,1)U L . 

It is important to emphasize that the parameters of the copula, L and U  express the tail 

dependence of the distributions. To make it more technically clear, we give the definitions of 
L and U  below (Patton, 2006). For random variable X1 and X2 with continuous distributions 

F1 and F2 respectively the upper tail dependence index U  is defined as 
1 1 1 1

1 2 2 1 1 1 1 1 2 2[ ( ) | ( )] [ ( ) | ( )].U

u ulim Pr X F u X F u lim Pr X F u X F u   (12) 

On the other hand, the lower tail dependence index L is defined as 
1 1 1 1

0 2 2 1 1 0 1 1 2 2[ ( ) | ( )] [ ( ) | ( )].L

u ulim Pr X F u X F u lim Pr X F u X F u   (13) 

The tail dependence indexes reflect the interactions of two random variables for extreme 

events. It is, therefore, quite natural to introduce such parameters while studying mutual 

dynamics of two or more positions of the portfolio. In our case one may wonder how to 

parameterize the mutual dynamics of DAX and WIG20 market indexes. The considerations 

below will shed some light on that problem. 

We will now introduce the symmetric Joy-Clayton copula. Define 
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( , | , ) 0.5( ( , | , ) (1 ,1 | , ) 1).U L U L U L

SJC JC JCu v u v u v u vC C C   (14) 

Observe that when U L then the copula is symmetric. We can parameterize the tail 

dependence by the following equations 

1

1

1
( | |),

p
U U

t U U t U t j t j

j

u v
p

1

1

1
( | |),

p
L U

t L L t L t j t j

j

u v
p

 

where 1( ) (1 )xx e is the logistic transformation to keep the correlation coefficient within 

(-1,1) interval. In applications, the integer p is moderate and we assume it is equal 10 (Patton, 

2006). We will now fit the symmetric Joy-Clayton dynamic copula to WIG20 and DAX data. 

 

Example 7. Fitting symmetric dynamic Joy-Clayton copula model 

We will now show the process of estimation of dynamic Joy-Clayton copula (SJC copula) for 

the returns based on indexes WIG20 and DAX. The range of data is as before. After the 

estimation process the value of the log likelihood function is equal LLFSJC = 136.7780. 

Below, we present a picture showing the time varying parameters. 

 

Figure 7: Time varying parameters of SJC copula 

 
 

On the picture above the dotted line represents the constant value of the estimated parameters 

in the nondynamic approach. The likelihood function is maximized for such copula function, 

since the dynamic symmetric Joy-Clayton copula is the best while modeling the dependence 

between returns for WIG20 and DAX market indexes. 

 

Bootstrap confidence intervals for VaR using copula functions 
In this section we apply the aforementioned technique of copula functions to get better idea on 

calculating Value-at-Risk for portfolio. We will be showing a method together with the 

example. Additionally, a bootstrap method will be used to generate confidence intervals for 

Value-at-Risk. In such a way, we will be getting some results concerning the accuracy of our 

method. 

To start, consider a portfolio composed of four assets coming from the Polish stock market. 

We take TP SA - the Polish Telecom, PKO BP - popular Polish Bank, the fuel conglomerate - 
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PKN ORLEN and , finally, the media company TVN. Calculation of Value-at-Risk for a 

profit and loss function L was conducted for logarithmic returns modeled with the 

GARCH(1,1) model. Subsequently, the residuals from the GARCH(1,1) model were 

described with the t-Student distribution and the joint distribution of four-dimensional 

residuals was  modeled with the copula C . This copula function C had parameters estimated 

via the IFM method described in previous sections. To this fit with the copula function C we 

have applied our dynamic conditional correlation model which has shown that there is 

essentially no dynamic component for correlation. The table below provides the empirical 

evidence for that fact. 

 

Table 5: p-value of test for presence of dynamic correlation 
Lag p-value 

1 0.1095 

2 0.1796 

3 0.3006 

4 0.2589 

5 0.3346 

6 0.3949 

7 0.3367 

 

The data used to estimate parameters of the chosen t-Student copula correspond to data in the 

period January 2007 to June 2010. Once copula function was estimated for such data, the 

Monte Carlo simulation was applied to get the forecast from the profit and loss function L. 

This, finally, was used to get the Value-at-Risk as a α-level percentile from the predicted 

profit and loss function L. 

The accuracy of this method was checked with the application of the nonparametric bootstrap 

method for the residuals (see e.g. Lahiri, 2003, page 200). The input for the bootstrap 

procedure was provided by the residuals (ε1,…,εn) generated from the joint distribution 

modeled by the copula function C . We were verifying the independence of the residuals 

with the usual ACF/PACF diagnostics. In such a way, using the bootstrapped residuals 

(ε1
p
,…,εn

p
) we were able to get the bootstrapped versions of the returns using the formula: 

 b

tt

b

tr                                                       (15) 

       

The empirical quantile obtained for the profit and loss function for the bootstrap data was 

considered an estimate of the original empirical quantile. Therefore, the confidence interval 

for  at the level 1 – β is defined via 
1

2 2

( , ),u u  where 
2

u  and 
1

2

u  are empirical 

quantiles from the estimates , of the order 
2

 and 1
2

, respectively, obtained  

from (15). 
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Figure 8: 95 percent confidence intervals for 5 percent VaR 

 
 

Figure 9: 99 percent confidence intervals for 1 percent VaR 

 
Figures 8 and 9 represent the ability of the bootstrap method to construct the confidence 

interval around the Value-at-Risk. Observe that  99% confidence intervals for VaR are wider 

than those for 95% VaR. 
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Conclusions 
In our paper we were considering the applications of the copula function theory in modeling 

returns. As a result, we presented an approach that is far more accurate and flexible than that 

based on the normal distribution theory. Moreover, using the copula functions we can more 

flexibly model the dependence between various elements in the portfolio. It is now 

increasingly evident that serious and contemporary returns analysis has to be based on the 

copula theory. 

In particular, we would like to stress the importance of the dynamic copula approach to assets 

modeling. We are putting together some important statistics relevant to that problem in the 

table below. 

 

Table 6: Comparison of the log likelihood function 

 t-stud. DCC(1,1) dyn. SJC  dyn. normal 

LLFWIG20 3031.989  3031.989 3031.989 

LLFDAX 3400.805  3400.805 3400.805 

LLFCopula 128.6105  136.7780 128.2976 

LLF 6561.4045 6496.8 6569.572 6561.0916 

 

According to the analysis of the likelihood function above, the dynamic SJC model  is the best 

and has a significant advantage over the DCC(1,1) model. 

We believe that the copula theory and its applications will provide an important benefit to 

practitioners. As an example, at the end of the paper, we provided a copula-based calculation 

of Value-at-Risk with the use of bootstrap method to get better control over the error rate of 

the calculation. We strongly recommend using copula-based techniques to all practitioners 

working in the area of predicting Value-at-Risk since these methods are shown here to be 

highly superior than techniques based on multivariate normal distribution. 
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