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We investigate several promising algorithms, proposed in literature, devised to detect 
sudden changes (structural breaks) in the volatility of financial time series. Comparative 
study of three techniques: ICSS, NPCPM and Cheng’s algorithm is carried out via numerical 
simulation in the case of simulated T-GARCH models and two real series, namely German 
and US stock indices. Simulations show that the NPCPM algorithm is superior to ICSS 
because is not over-sensitive either to heavy tails of market returns or to their serial 
dependence. Some signals generated by ICSS are falsely classified as structural breaks in 
volatility, while Cheng’s technique works well only when a single break occurs. 
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 Volatility is one of the all-important terms in financial econometrics, where dynamics of asset price 

processes, currency valuations and various economic data are the subject of research. Even though its multiple 

quantitative definitions are proposed, volatility can be viewed as a measure of the unpredictability of a given time 

series’ (like asset returns) behavior within an analyzed time span. It has been an object of intensive research for 

several decades now, as its proper understanding and description provides a cutting edge in trading on stock 

exchanges, portfolio and risk management, stress testing, etc. Formally, financial volatility can be a parameter 

(either constant or another stochastic process itself) present in the model driving the given price dynamics, eg. σ in 

Geometric Brownian Motion. The crucial role of this parameter in derivatives pricing emerges in the celebrated 

Black-Scholes option pricing formula dating back to 1973. Whenever computation and modelling is involved, 

volatility is estimated by a sample standard deviation of logreturns, but interpreting it as unconditional variance is 

also commonplace among practitioners. 

One of the empirically and widely stated hindrances, however, is that in many practical applications 

volatility evolves over time. It may have its separate stochastic dynamics proposed, leading to the concept of 

stochastic volatility models. Another approach, adequate in numerous cases, allows for sudden changes (structural 

breaks) occurring at the moment when some external shocks or other unexpected, profound shifts in economic 

background happen. A vast class of so-called threshold models has been proposed to handle these peculiarities 

more effectively. Here, rather than on price dynamics modelling issues, we will focus on the problem of detection 

of structural breaks in volatility, employing several promising techniques proposed in the literature cited 

successively below. (Mean or median change point estimation, albeit also prominent in research, is not addressed 

here.) Worth mentioning, irrespective of the solely econometric background we will stick to hereafter, is that the 

problem of volatility break detection is relevant also in other scientific areas such as climatology, medical sciences 

or mechanics.  

The paper is organized as follows. In Section 2 we formally set up the problem and after a brief discussion 

and references summary, we cite with more detail three known techniques of structural break detection, providing 

basic source theorems justifying their applicability. Section 3, being fundamental, presents comparison of these 

algorithms applied for simulated (with intended breaks at some time points) and real financial time series. Detailed 

computational results for simulated Threshold-GARCH models and two real indice quotes data are provided 

therein. We numerically show the irrelevance of the Cheng algorithm (discussed below) in the case of multiple 

volatility breaks. Section 4 contains conclusions and discussion of vital problems concerning stochastic modeling 

with presence of structural breaks. Finally, literature references are provided. 

 

 

Let {St}t=0,…,T  be a discretely observed asset price process, eg. daily record of an equity or stock index quotes. 

Logarithmic returns, in short logreturns are defined as:  

 1/log  ttt SSR ,                 t =1,…, T.                                                               (1) 

 

In the pioneer econometric literature, it was assumed that {Rt}t=1,…,T ~ iid N(0,σ
2
), the abbreviation 

standing for independent, identically distributed Gaussian. In the wake of abundant empirical evidence of 
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logreturns leptokurticity the stringent normality assumption was gradually relaxed. Further ample research 

showed that iid case in most situations was still too rigorous, paving the way eg. for conditionally heteroscedastic 

GARCH models proposed by Bollerslev (1986). However, all these cases (GARCH being weakly stationary) are 

characterized by constant unconditional variance σ
2
, which translates into constant volatility within the discussed 

time span. Such an assumption may lead to the choice of a wrongly specified model for dynamics of {Rt}, 

amplifying the risk of erroneous statistical inference, poor forecasting performance, etc. 

Doubts as to whether unconditional volatility is indeed flat over time may arise just upon a brief graphical 

inspection of asset return series over a sufficiently long time horizon. Alternate periods of lower and higher 

volatility, the phenomenon called clustering, is clearly evident in Figure 1, which presents daily logreturns series of 

(German) DAX30 and (USA) S&P500 indices throughout nearly 19 years, until November 2013. The 2008 crash is 

especially strongly pronounced. 

 

Figure 1: Logreturns of DAX30 and S&P500 stock indices; Jan 2, 1995 – Nov 7, 2013 
Source: Author’s own computations and graph based on data provided by www.bossa.pl 

Such behavior can be captured to some extent by GARCH series, but the optimal model fitted is quite 

often close to a stationarity boundary, which in turn diminishes its applicational value. Another but more 

sophisticated tool for examining the volatility evolution is provided by the Chicago Board of Options Exchange, 

which since 2004 has been offering a synthetic volatility index (VIX) as a quotable and tradable asset. Without 

going into technical details insubstantial for our purposes, we only mention that it is computed as an annualized, 

implied volatility averaged-out from at-the-money call and put S&P500 options with ca. monthly maturity, 

measured in vol points. Full description of the asset can be found on www.cboe.com. Figure 2 shows its 9-year 

trajectory.  

 

Figure 2: Nine-year series of VIX index quotes through Nov. 7, 2013 
Source: Author’s own graph based on data acquired from www.cboe.com 

 

Three distinct volatility spikes can be observed, namely the largest one in 2008, followed by smaller ones 

in 2010 and 2011. These shocks mark the fundamental changes (called also regime switches) in market dynamics 

due to external triggers, like the economic crash of 2008. With the passage of time elevated volatility regimes 

http://www.bossa.pl/
http://www.cboe.com/
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smoothly give up as the market dynamics reverse to the complacent mode indicated by sub-20 vol points levels. 

From our perspective it seems therefore promising to detect these breaks by employing targeted algorithms, some 

of which are in their nature statistical tests.  

Within the series {Rt}t=1,…,T we want to detect a possible single or multiple volatility break. More precisely, 

we aim at possibly the most accurate identification of the moments the changes occur, namely 1 < τ1 <…< τK < T; K 

<< T. Under these breaks, the unconditional variance evolves over time in a piecewise constant manner: 
22

jt    

for jj t  1 , 11  Kj , where for convenience we define starting and ending values 

TK  10 ,1  . 

Until now, under one or multiple volatility break(s) setup quite a few approaches have been proposed, 

resulting in concurrent detection algorithms. In the pioneer paper of Inclán and Tiao (1994), henceforward I&T, a 

CUSUM-type test for detecting a variance structural break in the iid  Gaussian case was derived. The procedure 

was then carried out iteratively to handle multiple breaks, thus providing an ICSS algorithm being the subject of 

Section 2.1. More extensive empirical application of this procedure for financial time series can be found in 

Aggarwal et al. (1999). However, the ICSS method employed in econometrics faced justified criticism by Sansó, 

Arago and Carrion-i-Silvestre (2004), as its fundamental assumptions are not met. Data are neither Gaussian, nor 

iid, causing poor performance of this tool. Indeed, many spurious (false) change points may be flagged due to fat-

tailed distribution of Rt’s (generating outliers) instead of a real structural volatility break. Moreover, serial 

dependence and conditional heteroscedasticity pose separate sources of test size distortions. Accordingly, Sansó 

et al. (2004) robustified the original ICSS method to handle leptokurticity and lack of independence, including 

GARCH effects. Kokoszka and Leipus (2000) provided a CUSUM-type consistent estimator of a single break point 

within a possibly non-Gaussian ARCH() framework. Cheng (2009) proposed a more efficient and numerically 

economical algorithm for change-point detection, encompassing among others the volatility break case. This 

technique is explained closer in Section 2.2 below. Alternatively, a more recent paper of Ross (2013) presented a 

nonparametric approach, based on the classic Mood’s rank test dating back to 1954. The old tool was applied to 

specific financial time series, and its iterative version for multiple break detection was performed, yielding a non-

parametric change-point algorithm (NPCPM). We focus on this procedure in Section 2.3. Xu (2013) presented a 

nonparametric approach, too, providing powerful CUSUM- and LM-type tests for both abrupt and smooth volatility 

break detection. In addition, the author provided a rich and versatile discussion and overview of the topic with 

ample reference. Needless to say, in the meantime numerous applicational papers on break detection have 

emerged. To list just a few, we mention Andreou and Ghysels (2002) who studied the topic in ARCH and stochastic 

volatility context; Covarrubias, Ewing, Hein and Thomson (2006) examined volatility changes in US 10-year 

Treasuries and dealt with modelling issues; structural breaks in currency exchange rates volatility within GARCH 

setup was considered in Rapach and Strauss (2008). The paper of Eckley, Killick, Evans and Jonathan (2010) 

deserves separate attention as it tackled volatility break detection in oceanography. To this purpose they analyzed 

storm wave heights across the Gulf of Mexico throughout the 20
th

 century, using a penalized likelihood change-

point algorithm but only within a Gaussian framework (including “normalizing” data preprocessing).  

Now, we proceed to a brief description of the three mentioned techniques of volatility break(s) detection, 

namely: ICSS, Cheng and NPCPM algorithms. 

 



 

36 

 

   

 

 

Firstly, let us quote the main theoretical result standing behind the I&T (1994) algorithm. 

Theorem [I&T (1994)]. Let {Rt}t=1,…,T  ~ iid N(0,σ
2
). For 1  k  T  define 
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Then, with T the following weak convergence holds 
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where 
0

tB  denotes Brownian bridge on [0,1]. 

The above result allows for detecting a single volatility structural break in terms of testing the null hypothesis of 

variance homogeneity, H0: σ
2
 ≡ Const  against H1: variance change occurs at some 1 < τ < T. The formal testing 

procedure rejects H0 at a predetermined level α if  

 


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2
,                                                                                                                              (3) 

where 


D is an asymptotic critical value, stemming from the Brownian bridge appearing in (2). For α=0.05 I&T 

(1994) provide numerically simulated 358.105.0 D . If (3) holds, then the variance (and thus volatility) structural 

break is detected at the moment τ realizing the maximum on the left-hand side of the inequality. 

In case of multiple breaks, the ICSS algorithm is performed iteratively with successive division of the observations 

set. On first detection the data are split into {R1,…, R – 1} and {R ,…, RT } upon which the test is performed again, 

etc…, until all change points  are detected. 
 

The third of the presented approaches was proposed in Cheng (2009), who tackled estimating a single 
change-point both in mean and variance, but obviously we focus on the latter case. For the return series R={Rt} let  
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where, intuitively, jiR ,  denotes the sample mean of {Ri, Ri+1,…,Rj}. The break detection algorithm runs as follows. 

Step 1. Define  )(),(),(max ]4/3[]2/[]4/[ RVRVRVM TTT , with [ ] denoting the integer part. If 

)(]4/[ RVM T  the first half of R, namely {R1,…,R[T/2]} is retained for the next step while the rest is dropped. 

)(]2/[ RVM T  calls for reserving the middle half, {R[T/4]+1,…,R[3T/4]} for further consideration, whereas 

)(]4/3[ RVM T  implies keeping the second half, {R[T/2]+1,…,RT}. 

Step 2. Apply the preceding step repeatedly to the reserved half until the remaining sample size drops below 4. 

Step 3. Define the estimator ̂  of the volatility break time τ as the median index of the last, smallest remaining 

sample. 

We refer the reader to Cheng (2009) for theoretical derivations of the algorithm. 
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The nonparametric and distribution-free approach to detecting structural breaks proposed by Ross (2013) 

refers to a classic tool of Mood (1954). Namely, given two samples, },...,{ ,11,11 kaaA   and 

},...,{ ,21,22 kTaaA  , the rank of each element in 
21 AAA   is calculated. Under the identical distribution 

of samples A1 and A2 the median rank of either sample equals (T+1)/2, so the following sum of squared rank 
deviations from one chosen sample, eg. A1, can be considered 

   




 
k

i

kkTk TarankM
1

2

,1, 2/)1()( .                                                                                        (5) 

Should the variances within A1 and A2 differ significantly, 


kTkM , would be unusually large. Under the null 

hypothesis of equal variances Mood (1954) showed that 
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which leads to the standardized test statistic 
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Whenever kTkM ,  exceeds an α-critical value kTkh ,; , then H0 under consideration is rejected at level α. Unlike 

the ICSS case, the rejection area is distribution-free, but kTkh ,;  is obtained via extensive Monte Carlo 

simulations. 

Ross’ (2013) idea adopted to the financial time series context is as follows. For every 1,...,2  Tk  the original 

logreturn series {Rt} is split into two samples {R1,…,Rk} and {Rk+1,…,RT}, mimicking A1 and A2 respectively, and 

accordingly obtaining the sequence 1,...,2, }{  TkkTkM  along the formulae (5)–(7). The resulting test statistic is 

  kTk
Tk

T MM 


 ,
12

max .                                                                                                                           (8) 

Ross (2013) provides simulated critical values hT for various T’s, as seen in Table 1 below. 
 

Table 1: Simulated critical values for NPCPM testing procedure 

T 10 20 50 100 200 500 1000 5000 10000 20000 

hT 2.48 2.65 2.88 2.99 3.09 3.2 3.25 3.35 3.37 3.42 

Source: Ross (2013) 

 
Again, if MT > hT then a structural break is discovered, and the best estimate of that break moment is 

||maxargˆ
k

k

D , where Dk stem from the ICSS algorithm (incidentally, this interaction between the two 

techniques might seem cumbersome). Finally, to detect multiple breaks, the NPCPM algorithm is carried out 

recursively upon subseries separated by the identified structural break moment ̂  as described above. 
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Firstly, we will perform the three detection techniques: ICSS, NPCPM and Cheng algorithm upon simulated 

data. Specifically, conditionally Gaussian Threshold-GARCH multiplicative models are considered with single and 

then multiple volatility breaks. 

The first model to be examined below is T-GARCH(1,1) with single structural break at τ = 300, namely, for 

6001  Tt   

  


















600300  ;5.03.006.0

3001  ;5.03.001.0

2

1

2

1

2

1

2

12

tR

tR

R

tt

tt

t

ttt








                                                      (9) 

where innovations ɛt ~ iid N(0,1) and }{ 1

22

 ttt RE  is a conditional variance, adapted to the process 

filtration }:{ tsRst   . (9) is just a concatenation of two separate, wide-sense stationary GARCH(1,1) 

models, introduced and explored in Bollerslev (1986). Unconditional variance of Rt in (9) can be easily calculated 

and it contains evident structural break at τ = 300: 
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Figure 3 presents the simulated path together with the break at half-time. 

 

Figure 3: Simulated path of T-GARCH(1,1) model (9), T=600, with single volatility break at =300 
Source: Author’s own computations 
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All the three detection techniques identified the change-point time with satisfactory accuracy. Both ICSS 

and NPCPM produced 295ˆ  , while Cheng’s device gave 299ˆ   and similarly proper results were reported 

for other piecewise weakly stationary T-GARCH(1,1) models with various structural break location, as soon as it is 

not too close to series start or end.   

Next, we consider a simulated conditionally Gaussian, varying size T-GARCH model with two distinct 

volatility breaks. Specifically,  
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          (11) 

This is again a piecewise weakly stationary GARCH model in which unconditional variance has two breaks 

at points predetermined in (11), and the calculus goes similarly as in (10): 
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The volatility (measured by variance) jumps four-fold at first breakpoint and halves its intensity at second 

breakpoint. The simulated trajectory of (11) is presented in Figure 4.  

 

Figure 4: Simulated path of T-GARCH model (11), T=600, with 2 breaks at 1=200, 2=300 
Source: Author’s own computations 
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The break detection results obtained by using each of the employed algorithms are the following:  

Table 2: The algorithms performance on simulated T-GARCH model with 2 volatility breaks 

algorithm true τ’s estimated s'̂  

ICSS 
 
200; 300 

194; 295 

Cheng 194; 218; 292; 310; 431 

NPCPM 194; 295 
Source: Author’s own computations 

ICSS and NPCPM work satisfactorily well, detecting breaks close to the true ones. However, the 

performance of the Cheng algorithm for multiple volatility breaks is highly disputable. Too many points have been 

flagged, either due to fat tails or the issue of its applicability for multiple break detection (which seems to have 

remained an open question, in the above simulations answered negatively). Therefore at this stage, in analysis of 

real financial time series we discard this algorithm, restricting ourselves to comparing the remaining two. 

Finally, we proceed to volatility break detection within logreturns of the two stock indices mentioned in 

Section 2, namely DAX30 and S&P500, see Figure 1. Both series consist of roughly T=4650 observations, which 

encompass alternate periods of prosperity, boom (markets in complacency mode), followed by bust/crash and 

resulting recession (markets in high nervousness regime). We compare numerical performance of ICSS and NPCPM 

techniques on these real data, exhibiting leptokurticity, serial dependence, possibly long memory and sudden 

profound regime changes caused by external shocks of great magnitude.  

Figures 5 and 6 present the final results of volatility break detection, carried out on {Rt}, but for graphical 

convenience superimposed on daily indices quotes series {St}, see (1). 

 

Figure 5: Detection of structural breaks in S&P500 and DAX30 indices: ICSS algorithm 
Source: Author’s own computations and graph based on data acquired from www.bossa.pl  

 

 

 

http://www.bossa.pl/
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Figure 6: Detection of structural breaks in S&P500 and DAX30 indices: NPCPM algorithm 
Source: Author’s own computations and graph based on data acquired from www.bossa.pl 

The ICSS algorithm looks over-sensitive, largely due to violation of the rigorous assumptions in I&T (1994), 

discussed above. 35 structural breaks in the US case and 40 in Germany translate into roughly half-yearly volatility 

breaks, but the detected change points cluster on the time line. The signals tend to appear with larger intensity 

during severe bear markets and higher uncertainty implied by considerable deviations of logreturns. In contrast, 

stable bull markets produce scarcer breaks, eg. not a single one has been recorded on the S&P500 within more 

than a one-year horizon until the series terminates on Nov 7, 2013. The DAX index itself is more volatile, hence 

more breaks are recorded. This may be partly explained by the ongoing economic instability of several eurozone 

countries. In both cases however, NPCPM proves more robust – we have 24 breaks in US and 36 in German 

financial volatility. Disappointingly, the algorithm has not captured the onset of the post-dotcom-bubble recession 

in the USA, staying blind until 2002.  

 

Detecting structural breaks in volatility is a challenging task, solved with various efficiency by several 

authors, under their specific sets of model assumptions. We compared three such algorithms of break detection 

for a simulated hypothetical return series and main stock indices. In general they perform better under a single 

break or when these regime changes are rare. ICSS technique is found to be quite sensitive to outliers, while 

NPCPM is more robust, ignoring some spurious breaks. Cheng’s device also overreacts to outliers. A single 

structural break is detected satisfactorily by all methods, provided lack of severe outliers within the data. Iterative 

versions of some techniques prove sometimes questionable, which was shown in our simulations. Specifically, 

successive iterations of Cheng’s algorithm beyond true breaks flag false signals. This suggests that the iterative 

version of the method does not converge, so the technique is suitable for detection of a single or at best two 

breaks. Ross’ device is not fully autonomous as it “inherits” some of the breaks detected by ICSS. 

Even in the case of NPCPM technique one can inquire about a still quite vast number of signalized breaks, 

sometimes within a short time span. This makes e.g. the regime-switching approach in modelling financial time 

series useless whenever breaks prove to be short-lasting (with no profound external influence upon the market 

http://www.bossa.pl/
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dynamics) mainly induced only by the heavy tails of logreturns series. Indeed, in financial econometrics, the time 

series structure is much more complicated (seasonalities, dummy effects, long memory, skewness, etc.), therefore 

the break signals are noisy and not always trustworthy. To produce more precise, de-noised techniques of volatility 

break detection, multivariate modelling could be advocated. More precisely, some explanatory additional time 

series like e.g. large fund cashflows, intensity of monetary interventions, margin debt levels and aggregate 

measures of investment sentiment might be used to enhance the detection probability of proper, long-lasting 

regime change, also for a wider scope of quotable assets than presented above. Discerning between endogenous 

and exogenous shocks would be helpful, too.  

There still seems to be vast space for further research, aiming at more proper volatility structural break 

detection techniques. Multivariate time series analysis with some exogenous processes (like global sentiment 

indicators and the scale of monetary “quantitative easing”) could substantially improve statistical inference, but at 

the evident cost of far more complex theoretical setup and simulations. The ongoing financial turbulence of the 

recent decade gives a strong motivation for further exploration of models with structural breaks in volatility. 

Proper detection of crucial  breaks  vitally enhances statistical  inference in financial time series, see e.g. 

Covarrubias et al. (2006), Kang, Cho and Yoon (2009). On that basis (in practice, real-time break detection is very 

welcome) one can separately model the series’ dynamics within distinct regimes, separated by the discovered 

break times. The present, prolonged but artificially sustained complacency of the financial markets is not granted 

once for good.  

 

The author would like to thank an anonymous referee for her/his helpful comments contributing 

especially to understanding the broader applicational potential of volatility break detection techniques, possibly in 

the context of a multivariate framework helping to identify the most important volatility breaks.  
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