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Abstract We closely examine and compare two promising techniques helpful in es� ma� ng the moment an 
asset bubble bursts. Namely, the Log-Periodic Power Law model and Generalized Hurst Exponent 
approaches are considered. Sequen� al LPPL fi �  ng to empirical fi nancial � me series exhibi� ng evi-
dent bubble behavior is presented. Es� ma� ng the cri� cal crash-� me works sa� sfactorily well also 
in the case of GHE, when substan� al „decorrela� on” prior to the event is visible. An extensive 
simula� on study carried out on empirical data: stock indices and commodi� es,  confi rms very good 
performance of the two approaches.
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Introduction

Specula� ve bubbles have been occurring all 
throughout the history of fi nancial markets, irrespec� ve 
of the asset classes involved. One of the most pronounced 
pioneer bubbles was the Dutch tulip mania in 1635-1637, 
followed by a huge crash that wiped out large fortunes. 
Whereas the early stages of bubble forma� on usually 
pass unno� ced, the ripe phases of these anomalies can 
be detected by a number of techniques, eg. augmented 
Dickey-Fuller tests for unit root. In addi� on, taking present 
market fundamentals simultaneously into account usually 
makes the work more successful. Bubbles inevitably burst, 
leading to severe price downturns or outright crashes of 
magnitude corresponding to the scale of the preceding 
overvalua� on. The exact moment of this burs� ng, called 
also a crash-� me or rupture point, draws a clear line 
between two dis� nct regimes for price dynamics. As far 
as investment effi  ciency is concerned, predic� ng the 
crash-� me tc poses a fi nancially vital and mathema� cally 
challenging research problem. Its importance is associated 
with large fi nancial bets put at stake, especially shortly 
before the crucial peak.

Several approaches have been proposed to model 
the price dynamics prior to and right a� er the bust. One 
of the powerful tools has been developed and expanded 
for nearly two decades by D. Sorne� e, who employs a Log-
Periodic Power Law for modeling the asset price dynamics 
(Johansen, Ledoit & Sorne� e, 2000). Another precursor of 
this approach is S. Drożdż (Drożdż, Grummer, Ruf & Speth, 
2003). Importantly, although the very � me tc can be 
easily determined ex-post, one should rather focus upon 
its reliable interval es� ma� on as the whole process of 
bubble burs� ng can be interpreted as a phase transi� on. 
The method has been proved successful on a number of 
occasions (Zhang et al., 2016), e.g. spectacularly precise 
predic� on of crude oil bubble burs� ng � me in 2008 
(Drożdż, Kwapień & Oświęcimka, 2008).

Another promising tool for detec� ng the end of the 
specula� ve bubble is analysis of long range dependence 
using the Hurst exponent. Specifi c decorrela� on envisaged 
in investor behavior can be found in numerous papers 
such as those by: Kristoufek (2010), Grech and Pamuła 
(2008), Morales, Di Ma� eo, Grama� ca, Aste (2012).

Although there exist other concurrent tools devised 
to tackle this topic (dynamic systems evolu� on, smooth 
transi� on models), in this paper we focus on the two 

above, applica� onally vital approaches, useful both from 
an academic and business point of view.

Log-Periodic Power Law Model

In our fi rst approach to detect specula� ve bubbles 
we are using the LPPL model. Based on Johansen et al. 
(2000) we assume that in a bubble regime price follows a 
stochas� c diff eren� al equa� on:

   (1)

where p = p(t) is the asset stock price, µ(t) - dri� , 
σ(t) - vola� lity, dW is the increment of a standard Wiener 
process and dj represents a discon� nuous jump such 
that j = 0 before the crash and j = 1 a� er the crash. Each 
successive crash corresponds to a unit jump of j. The 
parameter κ quan� fi es the amplitude of the crash when 
it occurs. 

Denote Ft - fi ltra� on generated by the price process 
p(t), namely Ft = σ{p(s): s ≤ t}. The jump’s dynamics are 
governed by a crash hazard rate h(t). Since h(t)dt is the 
probability that the crash occurs between t and t + dt 
condi� onally on the fact that it has not yet happened, we 
have 

 (2)

The JLS model assumes that two types of agents are 
present on the market: a group of traders with ra� onal 
expecta� ons and a group of noise traders who exhibit 
herding behavior that may destabilize the asset price. 
According to this model, the ac� ons of noise traders are 
quan� fi ed by the following dynamics of the hazard rate 
(Johansen et al., 2000):

  (3)

where B’,C’ denote amplitude parameters; ω,φ’ - 
phase parameters and tc is the cri� cal � me marking the 
end of the bubble. The power law behavior (tc −t)m−1 
embodies the mechanisms of posi� ve feedback at the 
origin of the bubble forma� on. The log-periodic func� on 
cos(ω ln(tc−t)−φ’) takes into account the existence of a 
possible hierarchical cascade of panic accelera� on causing 
the bubble to pop.

In the JLS model the ra� onal agent is risk neutral and 
has ra� onal expecta� ons. Thus, the asset price p(t) follows 
a mar� ngale process: . 
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Under these assump� ons the no-arbitrage condi� on is 
just .Accordingly, the excess return  is 
propor� onal to the crash hazard rate, namely  
Thus, solving (1) under the condi� on that no crash has 
occurred yet  leads to the following log-periodic 
power law (LPPL) equa� on for the log-price expecta� on:

 (4)

where  and 
. It should be noted that solu� on 

(4) describes the dynamics of the average log-price only 
up to the cri� cal � me tc and cannot be used beyond it. 
This crash-� me tc corresponds to the termina� on of the 
bubble and indicates the change to another regime, which 
could be either a large crash with accelera� ng oscilla� ons 
(nega� ve bubble – Wątorek, Drożdż & Oświęcimka, 2016) 
or decelera� ng oscilla� ons (an� -bubble – Johansen & 
Sorne� e, 1999) or a change of the average growth rate.

The LPPL model (4) is described by 3 linear parameters 
 and 4 nonlinear parameters . These 

parameters are subject to the following constraints, 
described in Sorne� e, Woodard, Jiang, Zhou (2013): 

; ; , , .

To fi t the LPPL func� on (4) to empirical data we 
employed a procedure proposed by Filimonov and 
Sorne� e (2013), which reduces the es� ma� on to just three 
nonlinear parameters . The key idea of this method 
is to decrease the number of nonlinear parameters 
and simultaneously to eliminate the interdependence 
between the phase  and the angular log-frequency . Let 
us rewrite (4) by expanding the cosine term as follows:

  (5)

Now, we introduce two new parameters:

   (6)

and rewrite the LPPL equa� on (4) as

  (7)

As seen from (7), the LPPL func� on has now only 3 
nonlinear  and 4 linear  parameters, 
and the two new parameters  and  contain the former 
phase .

The resul� ng model is calibrated on the data using 
the Ordinary Least Squares method, providing es� mators 
of all the parameters:  within a given 

� me window subject to analysis.

GHE approach

In our second approach, we aim at connec� ng 
“decorrela� on” (long memory tapering) and mul� fractality 
growth with the burs� ng of the specula� ve bubble. To 
achieve that, we employed the no� on of Generalized 
Hurst Exponent, henceforward GHE, based on Di Ma� eo 
(2007). This exponent is a tool for studying directly the 
scaling proper� es of the data via the q-th order moments 
of the distribu� on of the � me series increments  with 

, namely:

  (8)

where . GHE is then obtained from 
the scaling behavior of func� on (8) when the following 
rela� on holds:

     (9)

and hence we calculate GHE via regression from the 
following func� on:

     (10)

Processes exhibi� ng this scaling behavior can be 
divided into two classes:

1) Processes with , i.e. independent of  
These processes are unifractal, which means that their 
scaling behavior is uniquely determined by the constant 
H, known as Hurst exponent or self-affi  ne index (Di 
Ma� eo, 2007).

2) Processes with non-constant  are called 
mul� scaling (or mul� fractal) and each moment scales 
with a diff erent exponent. Previous works have pointed 
out how fi nancial � me series exhibit scaling behaviors 
which are not simply fractal, but rather mul� fractal, e.g. 
Di Ma� eo (2007).

Depending on q, the exponents are associated 
with special features. For instance, when ,  
describes the scaling behavior of the absolute values of 
the increments. This exponent value is expected to be 
closely related to the original Hurst exponent  indeed 
scaling the absolute spread within the increments. The 
exponent value corresponding to  is associated with 
the scaling of the autocorrela� on func� on and is related 
to the power spectrum index (Di Ma� eo, 2007).

Quite intui� vely, the recent past is more important 
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than the remote past. To incorporate that we can assume 
that the informa� onal impact of observa� ons decays 
exponen� ally. This smoothing can be a� ained by defi ning 
weights as:

   (11)

where  is the weights characteris� c � me. 
Introducing an exponen� al decay factor , the 
parameter  is given by Pozzi, Di Ma� eo, Aste, (2012)  as

    (12)

Hence the weighted GHE (abbrev.: GHEw) is obtained 
by replacing normal averages in (8) with weighted 
averages

 (13)

as described in the scaling rela� on (9), so we get

   (14)

As an indicator of degree of mul� fractality we 
consider the quan� ty:

    (15)

following the paper of Morales, Di Ma� eo, Aste 
(2014).

Mul� fractality in � me series can be interpreted 
as a consequence of fat-tailed behavior. Study given in 
Barunik, Aste, Di Ma� eo, Liu (2012) shows that temporal 
correla� ons have the eff ect of reducing the measured 
mul� fractality. In Moreales et al. (2012) GHEw was used 
as a tool to detect unstable periods within fi nancial � me 
series.

In our analysis we want to link mul� fractality 
increase at the end of the specula� ve bubble both with 
autocorrela� ons decay and fat-tailed distribu� ons. 
According to Fractal Market Hypothesis, mul� fractality 
in � me series may result from the existence of mul� ple 
market players having diff erent � me horizons (Weron 
& Weron, 2000). Capturing the dynamics of investors’ 
interac� ons can be carried out by using GHE, which 
measures the autocorrela� on func� on decay rate.

Empirical results

LPPL approach

In order to fi t the LPPL func� on described above we 
have to select the ini� al parameters . Next, we need 
to calculate linear parameters  by OLS method 
and then minimize the cost func� on using nonlinear least 
squares method. In previous works random choice of the 
ini� al parameters was proposed, see e.g. Filimonov and 
Sorne� e (2013), using local peak detec� on Pele (2012) 
or constant  – Drożdż et al. (2003). In our work we 
decided to test all possible values of startup parameters 

 with step 0.05,  [2,22] with 
step 0.5,  or  with step 
10, depending on the data length. All calcula� ons were 
performed in Matlab package. We minimized the cost 
func� on by using Region-Trust algorithm, which in Bree 
and Joseph (2013) was proposed as an improvement to 
the tradi� onally used Levenberg-Marquardt algorithm.

To get more robust results, we carried out the 
analysis on empirical data with moving star� ng point 
with step either 5 or 10 trading days in a shrinking � me 
window  and moving end point with 5 trading days 
step in an expanding � me window , similar 
as in Jiang, Zhou, Sorne� e, Woodard (2010). For each 
� me window approximately 8000 combina� ons of the 
prescribed ini� al parameters were taken and a� er the 
nonlinear op� miza� on we got the same amount of 
parameters with the sum of squared residuals. Lowest 
SSR points at the best t within each � me window. During 
the fi �  ng process ge�  ng a stable value of tc is essen� al, 
therefore we compared SSR’s from each � me window by 
coun� ng mean squared error. Finally, we calculated an 
80% confi dence interval based on 5% tc with the lowest 
MSE.

We tested our approach on 10 historical asset 
bubbles and then applied it on current, real fi nancial � me 
series. The results are presented in the table below:
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Here t1, tend, n denote the � me series beginning, 
end and length, respec� vely; tc interval - 80% confi dence 
interval based on 5% tc’s with the lowest MSE.

Figures 1–3 below show three stock indices from 
Table 1, namely WIG20, DAX and Shanghai Composite. 
Best LPPL func� on is depicted in red and the 80% tc 
confi dence interval in green.

Table 1: LPPL  fi �  ng results

data t1 tend n best tc tc interval peak
SHX 1/13/2014 10/2/2015 421 347 319-371 346
DAX 8/22/2011 10/2/2015 1046 925 930-1004 923
DJI 9/15/1981 8/21/1987 1502 1477 1464-1524 1504
DJI 7/23/2002 10/5/2007 1312 1359 1260-1360 1314
DJI 12/15/1920 9/4/1929 2259 2245 2244-2336 2259
WIG20 10/3/2001 10/29/2007 1526 1446 1422-1598 1526
Nasdaq 10/22/1998 3/13/2000 345 376 366-426 379
Nikkei 10/9/1981 12/29/1989 2043 2043 2036-2129 2043
Gold 2/2/2001 8/31/2011 2666 2666 2659-2748 2669
HSX 9/30/2002 10/30/2007 1258 1240 1235-1269 1258
Silver 10/14/2008 4/28/2011 649 654 623-661 649
CL 10/6/2006 7/3/2008 441 472 421-543 441

Source: Authors’ own computati ons

Figure 1: WIG20 3.10.2001-29.10.2007; best fi t: tc=1446, m=0.8001, ω=14.0023

Source: Authors’ own computati ons
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Figure 2: DAX 22.08.2011-02.10.2015; best fi t: tc=925, m=0.2999, ω=2.4988c

Source: Authors’ own computati ons

Figure 3: SHX 13.01.2014-02.10.2015; best fi t: tc=347, m=0.5498, ω=5.9967

Source: Authors’ own computati ons
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It is clearly seen that in all historical cases fi �  ng the 
LPPL func� on leads to good tc predic� ons. Results are 
comparable with those of Johansen and Sorne� e (2010). 
Especially worth no� ng, in April 2015 we achieved a 
perfect bubble peak detec� on for DAX, when the regime 
change occurred just 2 days prior to our es� mated tc. We 
also made post-hoc analysis of a recent bubble burst in 
the Shanghai Composite index, obtaining almost perfect 
predic� on.

The above results convincingly show that the LPPL 
approach is a very reliable tool for ex-ante predic� ng the 
bubble peak moment tc. This technique is undergoing 
further dynamic development. One of the possible 
generaliza� ons could be higher-order expansion of LPPL 
func� ons, addressed also to high frequency data analysis 
(on an intraday basis crucial news can some� mes lead to 
major reversals).

GHE approach

In our second approach we calculated GHEw from 
equa� on (14), using the open source algorithm of  T. Aste 
(Moreales et al., 2014) in the Matlab package. We set up 

, according to Di Ma� eo (2007). The � me 
windows used for successive GHEw calcula� ons contain 
250 data points (approximately T = 250 working days in 
a year), each window is shi� ed by one trading day, t = 
1. According to Pozzi et al., (2012), we used exponen� al 
smoothing lag equal to  = 83 days (around three months). 
Working with log-prices, the resul� ng GHEw es� mates 
correspond to the log-returns.

We used our second approach on the same empirical 
data and we obtained the following results:

Table 2: GHEw results

data t1 tend n min H(1) H(1) max  H H(1)-H(2) peak crash
SHX 1/13/2014 10/2/2015 421 389 0,4943 355 0,083 346 351
DAX 8/22/2011 10/2/2015 1046 1003 0,4766 948 0,0523 923 1017
DJ 9/6/1983 12/31/1987 1093 1012 0,3818 972 0,0735 1004 1033
DJI 7/19/2004 3/31/2009 1185 729 0,2664 894 0,081 814 1059
DJI 12/16/1924 11/25/1929 1323 1273 0,4588 1241 0,0857 1259 1305
WIG20 10/3/2003 5/30/2008 1169 1013 0,3506 1032 0,0652 1026 1080
Nasdaq 9/10/1998 3/16/2001 635 356 0,3506 354 0,0357 379 395
Nikkei 1/8/1986 4/5/1990 1106 1048 0,3829 1009 0,041 1043 1079
Gold 2/2/2001 12/30/2011 1252 976 0,343 1135 0,0916 1169 none
HSX 10/6/2003 2/25/2009 1081 843 0,4091 904 0,0793 758 973
Silver 10/14/2008 11/11/2011 790 576 0,3432 652 0,0917 649 654
CL 10/6/2006 10/23/2008 519 483 0,3491 432 0,0426 441 501

Source: Authors’ own computati ons
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Successive columns contain respec� vely: � me 
series star� ng date t1, its ending date tend, data length n, 
date of local H(1) minimum, local minimal value of H(1), 
� me of mul� fractality local maximum - max H, local 
mul� fractality maximum, H(1) − H(2), peak � me, crash 
� me. 

For the past bubbles maximal mul� fractality values 

were obtained together with minimal GHEw prior to the 
peak, which stands in accordance with the aforemen� oned 
decorrela� on phenomenon.

The fi gure below presents the specifi c case study with: 
H(1) value red (local minimum marked); mul� fractality - 
green (local maximum marked):

Figure 4: WIG20 3.10.2003-29.10.2007, GHEw analysis

Source: Authors’ own computati ons
GHEw low: 10.10.2007, mul� fractality peak: 7.11.2007, peak: 29.10.2007, crash: 21.01.2008.

Figure 5: DAX 22.08.2011-02.10.2015, GHEw analysis    

                      

Source: Authors’ own computati ons
GHEw low: 04.08.2015, mul� fractality peak: 08.05.2015, peak: 10.04.2015, crash: 24.08.2015.



www.e-� nanse.com
University of Information Technology and Management in Rzeszów 57

„e-Finanse” 2016, vol. 12 / nr 3Marcin Wątorek, Bartosz Stawiarski
Log-periodic power law and generalized hurst exponent analysis
in estimating an asset bubble bursting time

Our results shown above are consistent with Grech 
and Pamuła (2008), where the authors calculated local 
Hurst exponents using Detrended Fluctua� on Analysis 
for WIG and DJIA indices, whereas in Kristoufek (2010) 
PSX index was considered. According to Fractal Market 
Hypothesis (FMH) investors have heterogeneous � me 
horizons and strategies, which results in a fractal structure 
of the market. The observed mul� fractality evolu� on over 
� me is presumably induced by changing or fi �  ng the 
investment strategies. Once the specifi c strategy becomes 
predominant, the market mul� fractality grows, causing 
supply-demand disrup� ons and leading to the cri� cal 
point of major reversion.

In most of the cases analyzed mul� fractality growth 
is accompanied by  asubstan� al drop of GHEw below 0.5 
prior to the peak. It may be driven by systemic decorrela� on 
within the return series (long memory tapering). As long 
as the bubble is growing, the market par� cipants become 
more and more euphoric and nervous, amplifying thus 
the self-inducing feedback loop. This translates into more 
rapid � me series oscilla� ons right before tc, which is well 
captured by log-periodic func� ons. A� er the bubble pops, 
GHEw again rises beyond 0.5, bringing higher correla� ons 
back into place (which incidentally makes risk hedging 
more diffi  cult).

Conclusions

In our ar� cle we wanted to link the well described 
and established LPPL model with a new approach - GHEw 
analysis. We tested the two approaches on 10 historical 
bubbles of a large magnitude and then applied them to the 
current situa� on, e.g. on the German and Chinese stock 
markets. The results presented above prove convincingly 
that the tools used for es� ma� ng tc perform very well in 
most cases. The possibility of ex-ante predic� on of the 
bubble burs� ng � me based on the analysis of GHEw and 
mul� fractality poses an unques� onable advantage of the 
two presented approaches.

It can be conjectured that the specifi c decorrela� on 
within � me series returns is embedded into the 
characteris� cs of specula� ve bubbles. Strong interac� ons 
between investors give rise to self-inducing mechanisms 
propelling further growth of the bubble. Signifi cant 
waning of these dependencies is necessary for emergence 
of a � pping point � me tc and regime change resul� ng 
a� erwards.

Further research topics cover e.g. quan� ta� ve 
modeling and unifi ca� on of the condi� ons necessary for 
bubble burs� ng, most preferably in a mul� variate setup. 
For instance, some explanatory processes might be taken 
into account, like NYSE margin debt readings, corporate 
stock buybacks scale data or dedicated investor sen� ment 
surveys.

Figure 6: SHX 13.01.2014-30.09.2015, GHEw analysis

Source: Authors’ own computati ons
GHEw low: 13.08.2015, mul� fractality peak: 26.06.2015, peak: 12.06.2015, crash: 19.06.2015.
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